Introducing
PAUL DEITEL the New C++11

HARVEY DEITEL Standard

ONLINE ACCESS

Thank you for purchasing a new copy of C++ How to Program, Ninth Edition. Your textbook
includes twelve months of prepaid access to the book’s Companion Website. This prepaid
subscription provides you with full access to the following student support areas:

* VideoNotes are step-by-step video tutorials specifically designed to enhance the programming
concepts presented in this textbook

® Premium Web Chapters and Appendices

® Source Code

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the C++ How to Program, Ninth Edition, Companion Website for the first time, you
will need to register online using a computer with an Internet connection and a web browser. The
process takes just a couple of minutes and only needs to be completed once.

1. Go to http://www.pearsonhighered.com/deitel/
2. Click on Companion Website.
3. Click on the Register button.

4. On the registration page, enter your student access code* found beneath the scratch-off panel.
Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online registration
process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using the C++
How to Program Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any time at
http://www.pearsonhighered.com/deitel/ by providing your Login Name and Password when
prompted.

*Important: The access code can only be used once. This subscription is valid for twelve months
upon activation and is not transferable. If this access code has already been revealed, it may
no longer be valid. If this is the case, you can purchase a subscription by going to http://
www.pearsonhighered.com/deitel/ and following the on-screen instructions.

http://www.pearsonhighered.com/deitel/
http://www.pearsonhighered.com/deitel/
http://www.pearsonhighered.com/deitel/
http://www.pearsonhighered.com/deitel/

HOW TO PROGRAM

Deitel® Series Page

How To Program Series

Android How to Program

C How to Program, 7/E

C++ How to Program, 9/E

C++ How to Program, Late Objects Version, 7/E
Java™ How to Program, 9/E

Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program

Visual C#® 2012 How to Program, 3/E

Visual C++® 2008 How to Program, 2/E

Small Java™ How to Program, 6/E

Small C++ How to Program, 5/E

Simply Series

Simply C++: An App-Driven Tutorial Approach

Simply Java™ Programming: An App-Driven
Tutorial Approach

Simply Visual Basic® 2010, 4/E: An App-Driven
Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/
C++ How to Program, 7/E, 8/E & 8/E

Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 7/E, 8/E & 9/E

Simply Visual Basic 2010: An App-Driven
Approach, 4/E

Visual Basic® 2012 How to Program

Visual Basic® 2010 How to Program

Visual C#® 2012 How to Program, 5/E

Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series

C++ for Programmers, 2/E

Android for Programmers: An App-Driven
Approach

C# 2010 for Programmers, 3/E

Dive Into® iOS 6: An App-Driven Approach

iOS 6 for Programmers: An App-Driven Approach

Java™ for Programmers, 2/E

JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LivelLessons/
Android® App Development Fundamentals
C++ Fundamentals

C# Fundamentals

iOS 6 App Development Fundamentals
Java™ Fundamentals

JavaScript Fundamentals

Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html
and join the Deitel communities on Twitter®
@deitel
Facebook®
facebook.com/DeitelFan
and Google+
gplus.to/deitel
To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &

Associates, Inc. worldwide, visit:
www.deitel.com/training/
or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:

www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iPhone/iPad app development, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

HOW TO PROGRAM

~ Paul Deitel

Deitel & Associates, In

Deitel ¢ Associates, Inc.

PEARSON

Vice President and Editorial Director: Marcia J. Horton
Executive Editor: Tracy Johnson

Associate Editor: Carole Snyder

Director of Marketing: Christy Lesko

Marketing Manager: Yezan Alayan

Marketing Assistant: Jon Bryant

Director of Production: Erin Gregg

Managing Editor: Scozt Disanno

Associate Managing Editor: Robert Engelhardt
Operations Specialist: Lisa McDowell

Art Director: Anthony Gemmellaro

Cover Design: Abbey S. Deitel, Harvey M. Deitel, Anthony Gemmellaro
Cover Photo Credit: © Shutterstock/Sean Gladwell
Media Project Manager: Renata Butera

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page Vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2014, 2012, 2010 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufac-
tured in the United States of America. This publication is protected by Copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on file.

10987654321

ISBN-10: 0-13-337871-3 PEARSON

ISBN-13: 978-0-13-337871-9

In memory of Dennis Ritchie,
creator of the C programminyg language—
one of the Key languages that inspired C++.

Paul and Harvey Deitel

Trademarks

DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Carnegie Mellon Software Engineering Institute™ is a trademark of Carnegie Mellon University.
CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Contents

Chapters 24-26 and Appendices F-K are PDF documents posted online at the book’s
Companion Website, which is accessible from www.pearsonhighered.com/deitel.

Preface XXi

1.1
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

1.12
1.13
1.14
1.15
1.16

2.1

Introduction to Computers and C++ I
Introduction 2
Computers and the Internet in Industry and Research 2
Hardware and Software 5
1.3.1 Moore’s Law 6
1.3.2 Computer Organization 6
Data Hierarchy 7
Machine Languages, Assembly Languages and High-Level Languages 9
C++ 10
Programming Languages 11
Introduction to Object Technology 14
Typical C++ Development Environment 17
Test-Driving a C++ Application 19
Operating Systems 25
1.11.1 Windows—A Proprietary Operating System 25
1.11.2 Linux—An Open-Source Operating System 26
1.11.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and

iPod Touch® Devices 26
1.11.4 Google’s Android 27
The Internet and World Wide Web 27
Some Key Software Development Terminology 29
C++11 and the Open Source Boost Libraries 31
Keeping Up to Date with Information Technologies 32
Web Resources 33

Introduction to C++ Programming;
Input/Output and Operators 38

Introduction 39

www.pearsonhighered.com/deitel

viii

2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3

Contents

First Program in C++: Printing a Line of Text
Modifying Our First C++ Program

Another C++ Program: Adding Integers

Memory Concepts

Arithmetic

Decision Making: Equality and Relational Operators
Wrap-Up

Introduction to Classes, Objects and Strings

Introduction

Defining a Class with a Member Function

Defining a Member Function with a Parameter

Data Members, set Member Functions and get Member Functions
Initializing Objects with Constructors

Placing a Class in a Separate File for Reusability

Separating Interface from Implementation

Validating Data with sez Functions
Wrap-Up

Control Statements: Part I; Assignment,
++ and -- Operators

Introduction

Algorithms

Pseudocode

Control Structures

if Selection Statement

if...else Double-Selection Statement

while Repetition Statement

Formulating Algorithms: Counter-Controlled Repetition
Formulating Algorithms: Sentinel-Controlled Repetition
Formulating Algorithms: Nested Control Statements
Assignment Operators

Increment and Decrement Operators

Wrap-Up

Control Statements: Part 2; Logical Operators
Introduction

Essentials of Counter-Controlled Repetition

for Repetition Statement

39
43
44
48
49
53
57

66

67
67
70
74
79
83
87
92
97

104

105
105
106
107
110
112
116
118
124
134
139
140
143

157
158
158
159

Contents ix

5.4 Examples Using the for Statement 163
5.5 do...while Repetition Statement 168
5.6 switch Multiple-Selection Statement 169
5.7 break and continue Statements 178
5.8 Logical Operators 180
5.9 Confusing the Equality (==) and Assignment (=) Operators 185
5.10 Structured Programming Summary 186
5.11 Wrap-Up 191

6 Functions and an Introduction to Recursion 201

6.1 Introduction 202
6.2 Program Components in C++ 203
6.3 Math Library Functions 204
6.4 Function Definitions with Multiple Parameters 205
6.5 Function Prototypes and Argument Coercion 210
6.6 C++ Standard Library Headers 212
6.7 Case Study: Random Number Generation 214
6.8 Case Study: Game of Chance; Introducing enum 219
6.9 C++11 Random Numbers 224
6.10 Storage Classes and Storage Duration 225
6.11 Scope Rules 228
6.12 Function Call Stack and Activation Records 231
6.13 Functions with Empty Parameter Lists 235
6.14 Inline Functions 236
6.15 References and Reference Parameters 237
6.16 Default Arguments 240
6.17 Unary Scope Resolution Operator 242
6.18 Function Overloading 243
6.19 Function Templates 246
6.20 Recursion 248
6.21 Example Using Recursion: Fibonacci Series 252
6.22 Recursion vs. [teration 255
6.23 Wrap-Up 258

7 Class Templates array and vector;

Catching Exceptions 278
7.1 Introduction 279
7.2 arrays 279

7.3 Declaring arrays 281

X

7.4

7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9
8.10
8.11

Contents

Examples Using arrays

7.4.1 Declaring an array and Using a Loop to Initialize

the array’s Elements
7.4.2 Initializing an array in a Declaration with an
Initializer List

7.4.3 Specifying an array’s Size with a Constant Variable

and Setting array Elements with Calculations
7.4.4 Summing the Elements of an array

7.4.5 Using Bar Charts to Display array Data Graphically

7.4.6 Using the Elements of an array as Counters
7.4.7 Using arrays to Summarize Survey Results
7.4.8 Static Local arrays and Automatic Local arrays
Range-Based for Statement

Case Study: Class GradeBook Using an array to Store Grades

Sorting and Searching arrays
Multidimensional arrays

Case Study: Class GradeBook Using a Two-Dimensional array
Introduction to C++ Standard Library Class Template vector

Wrap-Up

Pointers

Introduction

Pointer Variable Declarations and Initialization
Pointer Operators

Pass-by-Reference with Pointers

Built-In Arrays

Using const with Pointers

8.6.1 Nonconstant Pointer to Nonconstant Data
8.6.2 Nonconstant Pointer to Constant Data
8.6.3 Constant Pointer to Nonconstant Data
8.6.4 Constant Pointer to Constant Data
sizeof Operator

Pointer Expressions and Pointer Arithmetic
Relationship Between Pointers and Built-In Arrays
Pointer-Based Strings

Wrap-Up

Classes: A Deeper Look; Throwing Exceptions

Introduction

281
281
282

283
286
286
288
289
291
293
295
302
304
307
314
320

334

335
335
337
339
344
346
347
347
348
349
350
353
355
358
361

377
378

9.2
9.3
9.4
9.5
9.6
9.7
9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15

10

10.1
10.2
10.3
10.4
10.5

10.6
10.7
10.8
10.9
10.10

10.11
10.12
10.13
10.14
10.15

11.1
11.2

Contents

Time Class Case Study

Class Scope and Accessing Class Members

Access Functions and Utility Functions

Time Class Case Study: Constructors with Default Arguments
Destructors

When Constructors and Destructors Are Called
Time Class Case Study: A Subtle Trap—Returning a
Reference or a Pointer to a private Data Member
Default Memberwise Assignment

const Objects and const Member Functions
Composition: Objects as Members of Classes

friend Functions and friend Classes

Using the this Pointer

static Class Members

Wrap-Up

Operator Overloading; Class string

Introduction

Using the Overloaded Operators of Standard Library Class string
Fundamentals of Operator Overloading

Overloading Binary Operators

Opverloading the Binary Stream Insertion and Stream Extraction
Operators

Overloading Unary Operators

Overloading the Unary Prefix and Postfix ++ and -- Operators
Case Study: A Date Class

Dynamic Memory Management

Case Study: Array Class

10.10.1 Using the Array Class

10.10.2 Array Class Definition

Operators as Member vs. Non-Member Functions

Converting Between Types

explicit Constructors and Conversion Operators

Overloading the Function Call Operator ()

Wrap-Up

Object-Oriented Programming: Inheritance

Introduction
Base Classes and Derived Classes

xi

379
385
386
387
393
393

397
400
402
404
410
412
418
423

433

434
435
438
439

440
At
445
446
451
453
454
458
466
466
468
470
471

482

483
483

Xii

11.3

11.4
11.5
11.6
11.7

12

12.1
12.2
12.3

12.4
12.5
12.6

12.7

12.8

12.9

Contents

Relationship between Base and Derived Classes

11.3.1 Creating and Using a CommissionEmpToyee Class

11.3.2 Creating a BasePTusCommissionEmployee Class
Without Using Inheritance

11.3.3 Creating a CommissionEmpTloyee—
BasePTlusCommissionEmpTloyee Inheritance Hierarchy

11.3.4 CommissionEmployee—BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Data

11.3.5 CommissionEmployee—BasePTusCommissionEmpTloyee
Inheritance Hierarchy Using private Data

Constructors and Destructors in Derived Classes

public, protected and private Inheritance

Software Engineering with Inheritance

Wrap-Up

486
486

491
497
501
504
509
511

512
512

Object-Oriented Programming: Polymorphism 517

Introduction
Introduction to Polymorphism: Polymorphic Video Game
Relationships Among Objects in an Inheritance Hierarchy

12.3.1 Invoking Base-Class Functions from Derived-Class Objects

12.3.2 Aiming Derived-Class Pointers at Base-Class Objects
12.3.3 Derived-Class Member-Function Calls via
Base-Class Pointers
12.3.4 Virtual Functions and Virtual Destructors
Type Fields and switch Statements
Abstract Classes and Pure virtual Functions
Case Study: Payroll System Using Polymorphism
12.6.1 Creating Abstract Base Class EmpToyee
12.6.2 Creating Concrete Derived Class SalariedEmployee
12.6.3 Creating Concrete Derived Class CommissionEmpTloyee
12.6.4 Creating Indirect Concrete Derived Class
BasePTusCommissionEmployee
12.6.5 Demonstrating Polymorphic Processing
(Optional) Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”
Case Study: Payroll System Using Polymorphism and Runtime
Type Information with Downcasting, dynamic_cast, typeid
and type_info
Wrap-Up

518
519
519
520
523

524
526
533
533
535
536
540
542

544
546

550

553
557

13

13.1
13.2

13.3

13.4

13.5
13.6

13.7

13.8
13.9

Contents

Stream Input/Output: A Deeper Look

Introduction

Streams

13.2.1 Classic Streams vs. Standard Streams

13.2.2 iostream Library Headers

13.2.3 Stream Input/Output Classes and Objects

Stream Output

13.3.1 Output of char * Variables

13.3.2 Character Output Using Member Function put

Stream Input

13.4.1 get and getline Member Functions

13.4.2 istream Member Functions peek, putback and ignore

13.4.3 Type-Safe I/0

Unformatted I/O Using read, write and gcount

Introduction to Stream Manipulators

13.6.1 Integral Stream Base: dec, oct, hex and setbase

13.6.2 Floating-Point Precision (precision, setprecision)

13.6.3 Field Width (width, setw)

13.6.4 User-Defined Output Stream Manipulators

Stream Format States and Stream Manipulators

13.7.1 Trailing Zeros and Decimal Points (showpoint)

13.7.2 Justification (1eft, right and internal)

13.7.3 Padding (fi11, setfil11)

13.7.4 Integral Stream Base (dec, oct, hex, showbase)

13.7.5 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed)

13.7.6 Uppercase/Lowercase Control (uppercase)

13.7.7 Specifying Boolean Format (boolalpha)

13.7.8 Setting and Resetting the Format State via
Member Function flags

Stream Error States

Tying an Output Stream to an Input Stream

13.10 Wrap-Up

14
14.1
142
143
14.4
145

File Processing

Introduction

Files and Streams

Creating a Sequential File

Reading Data from a Sequential File
Updating Sequential Files

xiii

562

563
564
564
565
565
567
568
568
569
569
572
572
572
573
574
574
576
577
578
579
580
582
583

584
585
585

586
587
590
590

599

600
600
601
605
611

xXiv

14.6
14.7
14.8
14.9
14.10
14.11
14.12

15
15.1
15.2
15.3
15.4
15.5

15.6

15.7

15.8
15.9

16

16.1
16.2
16.3

Contents

Random-Access Files

Creating a Random-Access File

Writing Data Randomly to a Random-Access File
Reading from a Random-Access File Sequentially
Case Study: A Transaction-Processing Program
Object Serialization

Wrap-Up

Standard Library Containers and Iterators

Introduction

Introduction to Containers

Introduction to Iterators

Introduction to Algorithms

Sequence Containers

15.5.1 vector Sequence Container
15.5.2 1ist Sequence Container
15.5.3 deque Sequence Container
Associative Containers

15.6.1 multiset Associative Container
15.6.2 set Associative Container
15.6.3 multimap Associative Container
15.6.4 map Associative Container
Container Adapters

15.7.1 stack Adapter

15.7.2 queue Adapter

15.7.3 priority_queue Adapter

Class bitset

Wrap-Up

Standard Library Algorithms

Introduction

Minimum Iterator Requirements

Algorithms

16.3.1 fi11, fi11_n, generate and generate_n

16.3.2 equal, mismatch and 1exicographical_compare

16.3.3 remove, remove_if, remove_copy and remove_copy_if

16.3.4 replace, replace_if, replace_copy and
replace_copy_if

16.3.5 Mathematical Algorithms

16.3.6 Basic Searching and Sorting Algorithms

611
612
617
619
621
628
628

638

639
640
644
649
649
650
658
662
664
665
668
669
671
673
673
675
676
677
679

690
691
691
693
693
695
697

700
702
706

16.4
16.5
16.6
16.7

17

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11

18

18.1
18.2
18.3

18.4
18.5
18.6
18.7

19
19.1

19.2
19.3

Contents

16.3.7 swap, iter_swap and swap_ranges

16.3.8 copy_backward, merge, unique and reverse
16.3.9 inplace_merge, unique_copy and reverse_copy
16.3.10 Set Operations

16.3.11 Tower_bound, upper_bound and equal_range
16.3.12 Heapsort

16.3.13 min, max, minmax and minmax_element
Function Objects

Lambda Expressions

Standard Library Algorithm Summary

Wrap-Up

Exception Handling: A Deeper Look

Introduction

Example: Handling an Attempt to Divide by Zero
Rethrowing an Exception

Stack Unwinding

When to Use Exception Handling

Constructors, Destructors and Exception Handling
Exceptions and Inheritance

Processing new Failures

Class unique_ptr and Dynamic Memory Allocation
Standard Library Exception Hierarchy

Wrap-Up

Introduction to Custom Templates

Introduction

Class Templates

Function Template to Manipulate a Class-Template
Specialization Object

Nontype Parameters

Default Arguments for Template Type Parameters
Overloading Function Templates

Wrap-Up

Custom Templatized Data Structures
Introduction

Self-Referential Classes

Linked Lists

XV

710
711
714
716
719
721
724
726
729
730
732

740
741
741
747
748
750
751
752
752
755
758
759

765

766
766

771
773
773
774
774

777

778
779
780

xXVi

19.4
19.5
19.6
19.7

20

20.1
20.2

20.3

20.4

2]

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14

22

22.1
22.2
22.3
22.4

Contents
Stacks 794
Queues 799
Trees 803
Wrap-Up 811
Searching and Sorting 822
Introduction 823
Searching Algorithms 824
20.2.1 Linear Search 824
20.2.2 Binary Search 827
Sorting Algorithms 831
20.3.1 Insertion Sort 832
20.3.2 Selection Sort 834
20.3.3 Merge Sort (A Recursive Implementation) 837
Wrap-Up 843

Class string and String Stream Processing:

A Deeper Look 849
Introduction 850
string Assignment and Concatenation 851
Comparing strings 853
Substrings 856
Swapping strings 856
string Characteristics 857
Finding Substrings and Characters in a string 859
Replacing Characters in a string 861
Inserting Characters into a string 863
Conversion to Pointer-Based char * Strings 864
Iterators 865
String Stream Processing 867
C++11 Numeric Conversion Functions 870
Wrap-Up 871
Bits, Characters, C Strings and structs 879
Introduction 880
Structure Definitions 880
typedef 882

Example: Card Shuffling and Dealing Simulation 882

22.5
22.6
22.7
22.8
22.9
22.10
22.11
22.12

23

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9

Contents

Bitwise Operators

Bit Fields

Character-Handling Library

C String-Manipulation Functions

C String-Conversion Functions

Search Functions of the C String-Handling Library
Memory Functions of the C String-Handling Library
Wrap-Up

Other Topics

Introduction

const_cast Operator

mutable Class Members

namespaces

Operator Keywords

Pointers to Class Members (. * and ->*)
Multiple Inheritance

Multiple Inheritance and virtual Base Classes
Wrap-Up

List of Chapters on the Web

A

D.1
D.2
D.3
D.4
D.5
D.6

Operator Precedence and Associativity
ASCII Character Set
Fundamental Types

Number Systems

Introduction

Abbreviating Binary Numbers as Octal and Hexadecimal Numbers

Converting Octal and Hexadecimal Numbers to Binary Numbers
Converting from Binary, Octal or Hexadecimal to Decimal
Converting from Decimal to Binary, Octal or Hexadecimal
Negative Binary Numbers: Two’s Complement Notation

XVii

885
894
897
903
910
915
919
923

938

939
939
941
943
946
948
950
955
959

965

967

969

970

972

973
976
977
977
978
980

xviii

E

E.1
E.2
E.3
E.4
E.5
E.6
E.7
E.8
E.9
E.10

Contents

Preprocessor

Introduction

#include Preprocessing Directive

#define Preprocessing Directive: Symbolic Constants
#define Preprocessing Directive: Macros
Conditional Compilation

#error and #pragma Preprocessing Directives
Operators # and ##

Predefined Symbolic Constants

Assertions

Wrap-Up

List of Appendices on the Web

Index

Online Chapters and Appendices

Chapters 24-26 and Appendices F-K are PDF documents posted online at the book’s
Companion Website, which is accessible from www.pearsonhighered.com/deitel.

24
25

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9

26

26.1

C++11 Additional Features

ATM Case Study, Part I:
Object-Oriented Design with the UML

Introduction

Introduction to Object-Oriented Analysis and Design
Examining the ATM Requirements Document

Identifying the Classes in the ATM Requirements Document
Identifying Class Attributes

Identifying Objects’ States and Activities

Identifying Class Operations

Indicating Collaboration Among Objects

Wrap-Up

ATM Case Study, Part 2:
Implementing an Object-Oriented Design

Introduction

985

986
986
987
987
989
990
991
991
992
992

997

999

24-1

25-1
25-2
25-2
25-3

25-10

25-17

25-21

25-25

25-32

25-39

26-1
26-2

www.pearsonhighered.com/deitel

26.2
26.3
26.4

26.5

F.1
F.2

F.3
F.4
E.5
F.6
E.7
F.8
F.9
F.10
F.11
F.12
F.13
F.14

G.1
G.2

Contents

Starting to Program the Classes of the ATM System
Incorporating Inheritance into the ATM System
ATM Case Study Implementation

26.4.1 Class ATM

26.4.2 Class Screen

26.4.3 Class Keypad

26.4.4 Class CashDispenser

26.4.5 Class DepositSlot

26.4.6 Class Account

26.4.7 Class BankDatabase

26.4.8 Class Transaction

26.4.9 Class BalanceInquiry

26.4.10 Class Withdrawal

26.4.11 Class Deposit

26.4.12 Test Program ATMCaseStudy. cpp
Wrap-Up

C Legacy Code Topics

Introduction

Redirecting Input/Output on UNIX/Linux/Mac OS X
and Windows Systems

Variable-Length Argument Lists

Using Command-Line Arguments

Notes on Compiling Multiple-Source-File Programs
Program Termination with exit and atexit

Type Qualifier volatile

Suffixes for Integer and Floating-Point Constants
Signal Handling

Dynamic Memory Allocation with calloc and realloc
Unconditional Branch: goto

Unions

Linkage Specifications
Wrap-Up

UML 2: Additional Diagram Types

Introduction

Additional Diagram Types

Using the Visual Studio Debugger

Xix

26-2

26-8
26-15
26-16
26-23
26-25
26-26
26-28
26-29
26-31
26-35
26-37
26-39
26-44
26-47
26-47

F-1
F-2

F-3
E-5
E-7
F-9
E-10
F-10
F-11
F-13
F-14
E-15
F-18
F-19

G-1
G-1
G-2

XX

H.1
H.2
H.3
H.4

H.5
H.6

I.1
I.2
L3
L4

L5
1.6

J
K

Contents

Introduction

Breakpoints and the Continue Command

Locals and Watch Windows

Controlling Execution Using the Step Into, Step Over, Step Out
and Continue Commands

Autos Window

Wrap-Up

Using the GNU C++ Debugger

Introduction

Breakpoints and the run, stop, continue and print Commands
print and set Commands

Controlling Execution Using the step, finish and

next Commands

watch Command

Wrap-Up
Using the Xcode Debugger

Test Driving a C++ Program on Mac OS X

[Note: The test drives for Windows and Linux are in Chapter 1.]

H-2
H-2
H-8

H-11
H-13
H-14

[-2
I-8

I-10
I-13
I-15

Preface

“The chief merit of language is clearness ...~
—Galen

Welcome to the C++ computer programming language and C++ How to Program, Ninth
Edition. This book presents leading-edge computing technologies. It’s appropriate for in-
troductory course sequences based on the curriculum recommendations of two key pro-
fessional organizations—the ACM and the IEEE. If you haven’t already done so, please
read the back cover and inside back cover—these capture the essence of the book concise-
ly. In this Preface we provide more detail for students, instructors and professionals.

At the heart of the book is the Deitel signature live-code approach—we present con-
cepts in the context of complete working programs followed by sample executions, rather
than in code snippets. Read the online Before You Begin section (www.deitel.com/
books/cpphtp9/cpphtp9_BYB.pdf) to learn how to set up your Linux-based, Windows-
based or Apple OS X-based computer to run the hundreds of code examples. All the source
code is available at www.deitel.com/books/cpphtp9 and www.pearsonhighered.com/
deitel. Use the source code we provide to run each program as you study it.

We believe that this book and its support materials will give you an informative, chal-
lenging and entertaining introduction to C++. As you read the book, if you have questions,
we're easy to reach at deitel@deitel.com—we’ll respond promptly. For book updates,
visit www. deitel.com/books/cpphtp9, join our social media communities on Facebook
(www.deitel.com/DeitelFan), Twitter (@deitel), Google+ (gplus.to/deitel) and
LinkedIn (bit.1y/DeitelLinkedIn), and subscribe to the Deite/® Buzz Online newsletter
(www.deitel.com/newsTletter/subscribe.html).

C++11 Standard

The new C++11 standard, published in 2011, motivated us to write C++ How to Program,
9/e. Throughout the book, each new C++11 feature is marked with the “11” icon you see
here in the margin. These are some of the key C++11 features of this new edition:

o Conforms to the new C++11 standard. Extensive coverage of the new C++11 fea-
tures (Fig. 1).

* Code thoroughly tested on three popular industrial-strength C++11 compilers.
We tested the code examples on GNU™ Ci++ 4.7, Microsoft® Visual C++®
2012 and Apple® LLVM in Xcode® 4.5.

* Smart pointers. Smart pointers help you avoid dynamic memory management er-
rors by providing additional functionality beyond that of built-in pointers. We dis-
cuss unique_ptr in Chapter 17, and shared_ptr and weak_ptr in Chapter 24.

3

www.deitel.com/books/cpphtp9/cpphtp9_BYB.pdf
www.deitel.com/books/cpphtp9/cpphtp9_BYB.pdf
www.deitel.com/books/cpphtp9
www.pearsonhighered.com/deitel
www.pearsonhighered.com/deitel
www.deitel.com/books/cpphtp9
www.deitel.com/DeitelFan
www.deitel.com/newsletter/subscribe.html

Preface

C++11 features in C++ How to Program, 9/e

all_of algorithm

any_of algorithm

array container

auto for type inference

begin/end functions

cbegin/cend container member
functions

Compiler fix for >> in template
types

copy_if algorithm

copy_n algorithm

crbegin/crend container mem-
ber functions

decltype

Default type arguments in func-
tion templates

defaulted member functions

Delegating constructors

deleted member functions

explicit conversion operators

final classes

final member functions

find_if_not algorithm

forward_Tist container

Immutable keys in associative
containers

In-class initializers

Inheriting base-class constructors

insert container member func-
tions return iterators

is_heap algorithm

is_heap_until algorithm

Keywords new in C++11

Lambda expressions

List initialization of key—value
pairs

List initialization of pair objects

List initialization of return values

List initializing a dynamically
allocated array

List initializing a vector

List initializers in constructor
calls

long Tong int type

min and max algorithms with
initializer_list parameters

minmax algorithm

minmax_element algorithm

move algorithm

Move assignment operators

move_backward algorithm

Move constructors

noexcept

Non-deterministic random
number generation

none_of algorithm

Numeric conversion
functions

nullptr

override keyword

Range-based for statement

Regular expressions

Rvalue references

Scoped enums

shared_ptr smart pointer

shrink_to_fit vector/deque
member function

Specifying the type of an
enum's constants

static_assert objects for
file names

string objects for file names

swap non-member function

Trailing return types for
functions

tuple variadic template

unique_ptr smart pointer

Unsigned Tong Tong int

weak_ptr smart pointer

Fig. 1 | A sampling of C++11 features in C++ How to Program, 9/e.

* Earlier coverage of Standard Library containers, iterators and algorithms, en-
hanced with C++11 capabilities. We moved the treatment of Standard Library
containers, iterators and algorithms from Chapter 22 in the previous edition to
Chapters 15 and 16 and enhanced it with additional C++11 features. The vast
majority of your data structure needs can be fulfilled by reusing these Standard
Library capabilities. We'll show you how to build your own custom data struc-
tures in Chapter 19.

* Online Chapter 24, C++11: Additional Topics. In this chapter, we present addi-
tional C++11 topics. The new C++11 standard has been available since 2011, but
not all C++ compilers have fully implemented the features. If all three of our key
compilers already implemented a particular C++11 feature at the time we wrote
this book, we generally integrated a discussion of that feature into the text with a
live-code example. If any of these compilers had 7oz implemented that feature, we
included a bold italic heading followed by a brief discussion of the feature. Many
of those discussions are expanded in online Chapter 24 as the features are imple-

Object-Oriented Programming xxiii

mented. This chapter includes discussions of regular expressions, shared_ptr
and weak_ptr smart pointers, move semantics and more.

Random Number generation, simulation and game playing. To help make pro-
grams more secure, we've added a treatment of C++11’s new non-deterministic
random-number generation capabilities.

Object-Oriented Programming

Early-objects approach. The book introduces the basic concepts and terminology
of object technology in Chapter 1. You'll develop your first customized classes
and objects in Chapter 3. Presenting objects and classes early gets you “thinking
about objects” immediately and mastering these concepts more thoroughly.!

Ci+ Standard Library string. C++ offers two types of strings—string class ob-
jects (which we begin using in Chapter 3) and C strings. We've replaced most oc-
currences of C strings with instances of C++ class string to make programs more
robust and eliminate many of the security problems of C strings. We continue to
discuss C strings later in the book to prepare you for working with the legacy code
that you’ll encounter in industry. In new development, you should favor string
objects.

C++ Standard Library array. Our primary treatment of arrays now uses the
Standard Library’s array class template instead of built-in, C-style, pointer-based
arrays. We still cover built-in arrays because they remain useful in C++ and so
that you’ll be able to read legacy code. C++ offers #hree types of arrays—arrays
and vectors (which we start using in Chapter 7) and C-style, pointer-based ar-
rays which we discuss in Chapter 8. As appropriate, we use class template array
instead of C arrays throughout the book. In new development, you should favor
class template array objects.

Crafting valuable classes. A key goal of this book is to prepare you to build valu-
able classes. In the Chapter 10 case study, you’ll build your own custom Array
class, then in the Chapter 18 exercises you’ll convert it to a class template. You’ll
truly appreciate the class concept. Chapter 10 begins with a test-drive of class
template string so you can see an elegant use of operator overloading before you
implement your own customized class with overloaded operators.

Case studies in object-oriented programming. We provide case studies that span
multiple sections and chapters and cover the software development lifecycle.
These include the GradeBook class in Chapters 3—7, the Time class in Chapter 9 and
the Employee class in Chapters 11-12. Chapter 12 contains a detailed diagram
and explanation of how C++ can implement polymorphism, virtual functions
and dynamic binding “under the hood.”

Optional case study: Using the UML to develop an object-oriented design and C++
implementation of an ATM. The UML™ (Unified Modeling Language™) is the

1. For courses that require a late-objects approach, consider C++ How to Program, Late Objects Version,
which begins with six chapters on programming fundamentals (including two on control statements)
and continues with seven chapters that gradually introduce object-oriented programming concepts.

xXXiv

Preface

industry-standard graphical language for modeling object-oriented systems. We
introduce the UML in the early chapters. Online Chapters 25 and 26 include an
optional case study on object-oriented design using the UML. We design and im-
plement the software for a simple automated teller machine (ATM). We analyze a
typical requirements document that specifies the system to be built. We determine
the classes needed to implement that system, the attributes the classes need to have,
the behaviors the classes need to exhibit and we specify how the classes must interact
with one another to meet the system requirements. From the design we produce a
complete C++ implementation. Students often report that the case study helps
them “tie it all together” and truly understand object orientation.

Exception handling. We integrate basic exception handling early in the book. In-
structors can easily pull more detailed material forward from Chapter 17, Excep-
tion Handling: A Deeper Look.

Custom template-based data structures. We provide a rich multi-chapter treat-
ment of data structures—see the Data Structures module in the chapter depen-
dency chart (Fig. 6).

Three programming paradigms. We discuss structured programming, object-orient-
ed programming and generic programming.

Pedagogic Features

Examples

Rich coverage of C++ fundamentals. We include a clear two-chapter treatment of
control statements and algorithm development.

Chapter 2 provides a simple introduction to C++ programming.

Examples. We include a broad range of example programs selected from comput-
er science, business, simulation, game playing and other topics (Fig. 2).

Array class case study

Author class

Bank account program

Bar chart printing program
BasePlusCommissionEmpTloyee class
Binary tree creation and traversal
BinarySearch test program

Card shuffling and dealing
ClientData class

CommissionEmpTloyee class

Comparing strings

Compilation and linking process
Compound interest calculations with for
Converting string objects to C strings
Counter-controlled repetition

Craps dice game simulation

Credit inquiry program

Date class

Downcasting and runtime type information

Employee class

explicit constructor

fibonacci function

fi11 algorithms

Function-template specializations of function
template printArray

generate algorithms

GradeBook Class

Initializing an array in a declaration

Input from an istringstream object

Iterative factorial solution

Fig. 2 | A sampling of the book’s examples. (Part | of 2.)

Examples

Lambda expressions

Linked list manipulation

map class template

Mathematical algorithms of the Standard Library
maximum function template

Merge sort program

multiset class template

new throwing bad_alloc on failure
PhoneNumber class

Poll analysis program

Polymorphism demonstration
Preincrementing and postincrementing
priority_queue adapter class

queue adapter class

Random-access files

Random number generation

Recursive function factorial

Rolling a six-sided die 6,000,000 times
SalariedEmployee class

Pedagogic Features XXV

SalesPerson class

Searching and sorting algorithms of the Stan-
dard Library

Sequential files

set class template

shared_ptr program

stack adapter class

Stack class

Stack unwinding

Standard Library string class program

Stream manipulator showbase

string assignment and concatenation

string member function substr

Summing integers with the for statement

Time class

unique_ptr object managing dynamically allo-
cated memory

Validating user input with regular expressions

vector class template

Fig. 2 | A sampling of the book’s examples. (Part 2 of 2.)

* Audience. The examples are accessible to computer science, information technol-
ogy, software engineering and business students in novice-level and intermediate-
level C++ courses. The book is also used by professional programmers.

o Self-Review Exercises and Answers. Extensive self-review exercises and answers are
included for self-study.

o Interesting, entertaining and challenging exercises. Each chapter concludes with
a substantial set of exercises, including simple recall of important terminology
and concepts, identifying the errors in code samples, writing individual program
statements, writing small portions of C++ classes and member and non-member
functions, writing complete programs and implementing major projects.
Figure 3 lists a sampling of the book’s exercises, including our Making a Differ-
ence exercises, which encourage you to use computers and the Internet to research
and solve significant social problems. We hope you’ll approach these exercises
with your own values, politics and beliefs.

Exercises

Airline Reservations System Bubble Sort Calculating Salaries

Advanced String- Build Your Own Compiler CarbonFootprint Abstract
Manipulation Exercises Build Your Own Computer Class: Polymorphism

Fig. 3 | A sampling of the book’s exercises. (Part | of 2.)

xXXVi Preface

Exercises

Card Shuffling and Dealing
Computer-Assisted Instruction
Computer-Assisted Instruc-
tion: Difficulty Levels
Computer-Assisted
Instruction: Monitoring
Student Performance
Computer-Assisted
Instruction: Reducing
Student Fatigue
Computer-Assisted
Instruction: Varying the

Eight Queens
Emergency Response
Enforcing Privacy with

Cryptography

Facebook User Base Growth
Fibonacci Series

Gas Mileage

Global Warming Facts Quiz
Guess the Number Game
Hangman Game

Health Records Knight's Tour

Limericks

Types of Problems Maze Traversal: Generating
Cooking with Healthier Ingre- Mazes Randomly

dients Morse Code
Craps Game Modification Payroll System
Credit Limits Modification

Crossword Puzzle

Peter Minuit Problem

Generator Phishing Scanner
Cryptograms Pig Latin
De Morgan’s Laws Polymorphic Banking Program
Dice Rolling Using Account Hierarchy

Fig. 3 | A sampling of the book’s exercises. (Part 2 of 2.)

Pythagorean Triples

Salary Calculator

Sieve of Eratosthenes

Simple Decryption

Simple Encryption

SMS Language

Spam Scanner

Spelling Checker

Target-Heart-Rate
Calculator

Tax Plan Alternatives;
The “Fair Tax”

Telephone number word
generator

“The Twelve Days of
Christmas” Song

Tortoise and the Hare
Simulation

Towers of Hanoi

World Population Growth

* [lllustrations and figures. Abundant tables, line drawings, UML diagrams, pro-
grams and program outputs are included. A sampling of the book’s drawings and

diagrams is shown in

Drawings and diagrams

(Fig. 4).

Main text drawings and diagrams

Data hierarchy

Compilation and linking pro-
cess for multiple source file
programs

Order in which a second-degree
polynomial is evaluated

GradeBook class diagrams

if single-selection statement
activity diagram

if...else double-selection
statement activity diagram

while repetition statement
UML activity diagram

for repetition statement UML
activity diagram

do...while repetition statement
UML activity diagram

switch multiple-selection state-
ment activity diagram

C++’s single-entry/single-exit
sequence, selection and rep-
etition statements

Pass-by-value and pass-by-ref-
erence analysis of a program

Inheritance hierarchy diagrams

Function-call stack and activa-
tion records

Recursive calls to function
fibonacci

Pointer arithmetic diagrams

CommunityMember Inheritance
hierarchy

Shape inheritance hierarchy

Fig. 4 | A sampling of the book’s drawings and diagrams. (Part | of 2.)

Other Features xXXVii

Drawings and diagrams

public, protected and
private inheritance

Employee hierarchy UML class
diagram

How virtual function calls
work

Stream-1/O template hierarchy

Two self-referential class
objects linked together

Graphical representation of a
list

Operation insertAtFront rep-
resented graphically

Operation insertAtBack repre-
sented graphically

Operation removeFromFront
represented graphically

ATM Case Study drawings and diagrams

Use case diagram for the ATM
system from the User’s per-
spective

Class diagram showing an asso-
ciation among classes

Class diagram showing compo-
sition relationships

Class diagram for the ATM sys-
tem model

Classes with attributes

State diagram for the ATM

Activity diagram for a Balance-
Inquiry transaction

Activity diagram for a Wi th-
drawal transaction

Classes in the ATM system with
attributes and operations

Communication diagram of
the ATM executing a bal-
ance inquiry

Communication diagram for
executing a balance inquiry

Sequence diagram that models
aWithdrawal executing

Use case diagram for a modi-
fied version of our ATM sys-
tem that also allows users to
transfer money between
accounts

Operation removeFromBack
represented graphically

Circular, singly linked list

Doubly linked list

Circular, doubly linked list

Graphical representation of a
binary tree

Class diagram showing compo-
sition relationships of a class
Car

Class diagram for the ATM sys-
tem model including class
Deposit

Activity diagram for a Deposit
transaction

Sequence diagram that models
a Deposit executing

Fig. 4 | A sampling of the book’s drawings and diagrams. (Part 2 of 2.)

e VideoNotes. The Companion Website includes many hours of VideoNotes in
which co-author Paul Deitel explains in detail key programs in the core chapters.
We've created a jump table that maps each VideoNote to the corresponding fig-
ures in the book (www.deitel.com/books/cpphtp9/jump_table.pdf).

Other Features

* Pointers. We provide thorough coverage of the built-in pointer capabilities and
the intimate relationship among built-in pointers, C strings and built-in arrays.

* Visual presentation of searching and sorting, with a simple explanation of Big O.

* Printed book contains core content; additional content is online. A few online
chapters and appendices are included. These are available in searchable PDF for-
mat on the book’s password-protected Companion Website—see the access card
information on the inside front cover.

* Debugger appendices. We provide three debugger appendices on the book’s Com-
panion Website—Appendix H, Using the Visual Studio Debugger, Appendix I,
Using the GNU C++ Debugger and Appendix J, Using the Xcode Debugger.

www.deitel.com/books/cpphtp9/jump_table.pdf

xxviii Preface

Secure C++ Programming

I¢’s difficult to build industrial-strength systems that stand up to attacks from viruses,
worms, and other forms of “malware.” Today, via the Internet, such attacks can be instan-
taneous and global in scope. Building security into software from the beginning of the de-
velopment cycle can greatly reduce vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices that leave systems open to attacks.

We'd like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard.

We've done the same for C++ How to Program, 9/e, adhering to the CERT C++ Secure
Coding Standard, which you can find ac:

www.securecoding.cert.org

We were pleased to discover that we've already been recommending many of these coding
practices in our books. We upgraded our code and discussions to conform to these prac-
tices, as appropriate for an introductory/intermediate-level textbook. If you’ll be building
industrial-strength C++ systems, consider reading Secure Coding in C and C++, Second
Edition (Robert Seacord, Addison-Wesley Professional).

Online Content

The book’s Companion Website, which is accessible at
www . pearsonhighered.com/deitel

(see the inside front cover of the book for an access code) contains the following chapters
and appendices in searchable PDF format:

e Chapter 24, C++11 Additional Topics

e Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with the UML
e Chapter 26, ATM Case Study, Part 2: Implementing an Object-Oriented Design
e Appendix F, C Legacy Code Topics

* Appendix G, UML 2: Additional Diagram Types

e Appendix H, Using the Visual Studio Debugger

e Appendix I, Using the GNU C++ Debugger

e Appendix J, Using the Xcode Debugger

e Appendix K, Test Driving a C++ Program on Mac OS X. (The test drives for
Windows and Linux are in Chapter 1.)

www.cert.org
www.securecoding.cert.org
www.pearsonhighered.com/deitel

Dependency Chart xXix

The Companion Website also includes:

e Extensive VideoNotes—watch and listen as co-author Paul Deitel discusses key
code examples in the core chapters of the book.

e Building Your Own Compiler exercise descriptions from Chapter 19 (posted at
the Companion Website and at www.deitel.com/books/cpphtp9).

* Chapter 1 test-drive for Mac OS X.

Dependency Chart

The chart in Fig. 6 shows the dependencies among the chapters to help instructors plan
their syllabi. C++ How to Program, 9/e is appropriate for CS1 and many CS2 courses. The
chart shows the book’s modular organization.

Teaching Approach

C++ How to Program, 9/e, contains a rich collection of examples. We stress program clarity
and concentrate on building well-engineered software.

Live-code approach. The book is loaded with “live-code” examples—most new concepts are
presented in complete working C++ applications, followed by one or more executions showing
program inputs and outputs. In the few cases where we use a code snippet, to ensure that it’s
correct we tested it in a complete working program, then copied and pasted it into the book.

Syntax coloring. For readability, we syntax color all the C++ code, similar to the way most
C++ integrated-development environments and code editors syntax color code. Our col-
oring conventions are as follows:

comments appear like this
keywords appear 1ike this

all other code appears in black
Code highlighting. We place light-blue shaded rectangles around key code segments.

Using fonts for emphasis. We color the defining occurrence of each key term in bold blue
text for easy reference. We emphasize on-screen components in the bold Helvetica font
(e.g., the File menu) and C++ program text in the Lucida font (for example, int x = 5;).

Objectives. The opening quotes are followed by a list of chapter objectives.

Programming tips. We include programming tips to help you focus on key aspects of pro-
gram development. These tips and practices represent the best we've gleaned from a com-
bined seven decades of teaching and industry experience.

w75 Good Programming Practices

The Good Programming Practices call attention to techniques that will help you pro-
U duce programs that are clearer, more understandable and more maintainable.

—7 Common Programming Errors

"Lz Pointing out these Common Programming Errors reduces the likelihood that you'll
=’ make them.

www.deitel.com/books/cpphtp9

XXX Preface

Fig. 6 Introduction
Chapter » | Introduction to
Dependency Computers and C++
Chart i

Intro to Programmin&
[Note: Arrows pointing into a Classes and Objects

chapter indicate that chapter’s 2 Intro to C++ Programming,
dependencies.] Input/Output and Operators

3 Intro to Classes,

Objects and Strings /
v

ﬂ:ontrol Statementsx
Methods and Arrays

4 Control Statements: Part I;
Assignment, ++ and -- Operators

5 Control Statements: Part 2;
Logical Operators

6 Functions and an
Intro to Recursion

7 Class Templates array and

vector; Catciing Exceptions
Legacy C Topics
gacy P 8 Poi‘nters /
22 Bits, Characters, Il
C-Strings and structs . .
& / Object-Oriented \
Programming
9 9 9 Classes: A Deeper Look;
Object-Oriented : A f
. . Th Except Data Structures
Design with the UML T
. : . » |5 Standard Library
25 (Optional) Object-Oriented 10 Operator Overloading; Containers and Iterators
Design with the UML Class string
* + 16 Standard Library Algorithms
26 (Optional) Implementing an 11 OOP: Inheritance
Object-Oriented Design :
12 OOP: Polymorphism 6.20-6.22 Recursion
/Streams, Files and\ 17 Exception Handling: > 18 Intro to Custom Templates
Strings K A Deeper Look
» |3 Stream 19 Custom Templatized =
Input/Output: A D Look! /~ .
nput/Outpu eeper Loo Other Toplcs and Data Structures

C++11 Features

{ } \20 Searching and Sortingj
14 File 21 Class string { }

Processing and String Stream 23 Other 24 C++1 1
Processing: A Topics Additional Features
K Deeper Loou k

I. Most of Chapter I3 is readable after Chapter 7. A small portion requires Chapters || and 18.

Obtaining the Software Used in C++ How to Program, 9/e xXXXi

< Error-Prevention Tips

" | These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of C++ that prevent bugs from getting into programs in the first place.

_Performance Tips
LWL These tips highlight opportunities for making your programs run faster or minimizing the
' amount of memory that they occupy.

- Portability Tips
&. The Portability Tips help you write code that will run on a variety of platforms.

4w Software Engineering Observations

The Software Engineering Observations highlight architectural and design issues that
S50 affect the construction of software systems, especially large-scale systems.

Summary Bullets. We present a section-by-section, bullet-list summary of the chapter. We
include the page number of each term’s defining occurrence in the chapter for easy reference.

Index. We've included an extensive index, with defining occurrences of key terms high-
lighted with a bold blue page number.

Obtaining the Software Used in C++ How to Program, 9/e

We wrote the code examples in C++ How to Program, 9/e using the following C++ devel-
opment tools:

* Microsoft’s free Visual Studio Express 2012 for Windows Desktop, which in-
cludes Visual C++ and other Microsoft development tools. This runs on Win-
dows 7 and 8 and is available for download at

www.microsoft.com/visualstudio/eng/downloads#
d-express-windows-desktop

¢ GNU’s free GNU C++ (gcc.gnu.org/install/binaries.html), which is al-
ready installed on most Linux systems and can also be installed on Mac OS X and
Windows systems.

e Apple’s free Xcode, which OS X users can download from the Mac App Store.

Instructor Supplements

The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

o Solutions Manual contains solutions to most of the end-of-chapter exercises. We've
added many Making a Difference exercises, most with solutions. Please do not write
to us requesting access to the Pearson Instructor’s Resource Center. Access is re-
stricted to college instructors teaching from the book. Instructors may obtain ac-
cess only through their Pearson representatives. If you're not a registered faculty
member, contact your Pearson representative or visit waww. pearsonhighered. com/
educator/replocator/. Exercise Solutions are 7oz provided for “project” exercis-

www.pearsonhighered.com/irc
www.pearsonhighered.com/educator/replocator/
www.pearsonhighered.com/educator/replocator/
www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop
www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop

xXXXii Preface

es. Check out our Programming Projects Resource Center for lots of additional ex-
ercise and project possibilities

www.deitel.com/ProgrammingProjects
o Test Item File of multiple-choice questions (approximately two per book section)

o Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize the key points in the text

Online Practice and Assessment with MyProgrammingLab™

MyProgrammingLab™ helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyPro-
gramminglab improves the programming competence of beginning students who often
struggle with the basic concepts and paradigms of popular high-level programming lan-
guages.

A self-study and homework tool, a MyProgramminglab course consists of hundreds
of small practice problems organized around the structure of this textbook. For students,
the system automatically detects errors in the logic and syntax of their code submissions
and offers targeted hints that enable students to figure out what went wrong—and why.
For instructors, a comprehensive gradebook tracks correct and incorrect answers and
stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students or to get
started using MyProgramminglLab in your course, visit waw.myprogramminglab.com.

Acknowledgments

We'd like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. Abbey co-authored Chapter 1 and she and Barbara pains-
takingly researched the new capabilities of C++11.

We're fortunate to have worked with the dedicated team of publishing professionals
at Pearson Higher Education. We appreciate the guidance, wisdom and energy of Tracy
Johnson, Executive Editor, Computer Science. Carole Snyder did an extraordinary job
recruiting the book’s reviewers and managing the review process. Bob Engelhardt did a
wonderful job bringing the book to publication.

Reviewers

We wish to acknowledge the efforts of our reviewers. The book was scrutinized by current
and former members of the C++ standards committee that developed C++11, academics
teaching C++ courses and industry experts. They provided countless suggestions for im-
proving the presentation. Any remaining flaws in the book are our own.

Ninth Edition reviewers: Dean Michael Berris (Google, Member ISO C++ Com-
mittee), Danny Kalev (C++ expert, certified system analyst and former member of the C++
Standards Committee), Linda M. Krause (Elmhurst College), James P. McNellis (Micro-
soft Corporation), Robert C. Seacord (Secure Coding Manager at SEI/CERT, author of
Secure Coding in C and C++) and José Antonio Gonzdlez Seco (Parliament of Andalusia).

Other recent edition reviewers: Virginia Bailey (Jackson State University), Thomas J.
Borrelli (Rochester Institute of Technology), Ed Brey (Kohler Co.), Chris Cox (Adobe

www.myprogramminglab.com
www.deitel.com/ProgrammingProjects

About the Authors xxxiii

Systems), Gregory Dai (eBay), Peter]J. DePasquale (The College of New Jersey), John
Dibling (SpryWare), Susan Gauch (University of Arkansas), Doug Gregor (Apple, Inc.),
Jack Hagemeister (Washington State University), Williams M. Higdon (University of
Indiana), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis Integration Solu-
tions), Ed James-Beckham (Borland), Wing-Ning Li (University of Arkansas), Dean
Mathias (Utah State University), Robert A. McLain (Tidewater Community College),
Robert Myers (Florida State University), Gavin Osborne (Saskatchewan Inst. of App. Sci.
and Tech.), Amar Raheja (California State Polytechnic University, Pomona), April
Reagan (Microsoft), Raymond Stephenson (Microsoft), Dave Topham (Ohlone College),
Anthony Williams (author and C++ Standards Committee member) and Chad Willwerth
(University Washington, Tacoma).

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

deitel@deitel.com

We'll respond promptly. We enjoyed writing C++ How to Program, Ninth Edition. We
hope you enjoy reading it!

Paul Deitel
Harvey Deitel

About the Authors

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy Space Center, the
National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software,
Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot, Invensys and many
more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-selling program-
ming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees
in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University.
He has extensive college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. The Deitels’ publications have
earned international recognition, with translations published in Chinese, Korean, Japa-
nese, German, Russian, Spanish, French, Polish, Italian, Portuguese, Greek, Urdu and
Turkish. Dr. Deitel has delivered hundreds of programming courses to corporate, aca-
demic, government and military clients.

Corporate Training from Deitel & Associates, Inc.

Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web

XXXivV Preface

software technology. The company’s clients include many of the world’s largest compa-
nies, government agencies, branches of the military, and academic institutions. The com-
pany offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including C++, Visual C++®, C, Java™, Visual
C#%, Visual Basic®, XML®, Pyth0n®, object technology, Internet and web program-
ming, Android app development, Objective-C and iPhone app development and a grow-
ing list of additional programming and software development courses.

Through its 36-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming college textbooks, professional
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

deitel@deitel.com
To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:
www.deitel.com/training

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

www . pearsonhighered.com/information/index.page

www.deitel.com
www.deitel.com/training
www.pearsonhighered.com/information/index.page

Introduction to Computers
and C++

Man is still the most
extraordinary computer of all.
—TJohn F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

How wonderful it is that
nobody need wait a single
moment before starting to
improve the world.

—Anne Frank

Objectives
In this chapter you'll learn:

m Exciting recent developments
in the computer field.

= Computer hardware, soft-
ware and networking basics.

m The data hierarchy.

m The different types of
programming languages.

m Basic object-technology
concepts.

m Some basics of the Internet
and the World Wide Web.

m A typical C++ program-
development environment.

m To test-drive a C++
application.

= Some key recent software
technologies.

= How computers can help you
make a difference.

i

2 Chapter | Introduction to Computers and C++

1.1 Introduction 1.10 Test-Driving a C++ Application
1.2 Computers and the Internet in Industry I.11 Operating Systems
and Research I.11.1 Windows
I.11.2 Linux
1.3 Hardware’ and Software 1113 Apple’s 05 X
131 Moore’s law I.11.4 Google’s Android
1572 ColnDIIEHO ey 1.12 The Internet and World Wide Web
1.4 Data Hierarchy
) 1.13 Some Key Software Development
1.5 Machine Languages, Assembly Terminology
L High-Level L
IR el W e 1.14 C++11 and the Open Source Boost
1.6 Ctt) Libraries
1.7 Programming Languages 1.15 Keeping Up to Date with
1.8 Introduction to Object Technology Information Technologies
1.9 Typical C++ Development Environment 1.16 Web Resources

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference |
Making a Difference Resources

1.1 Introduction

Welcome to C++—a powerful computer programming language that’s appropriate for
technically oriented people with little or no programming experience, and for experienced
programmers to use in building substantial information systems. You're already familiar
with the powerful tasks computers perform. Using this textbook, you’ll write instructions
commanding computers to perform those kinds of tasks. Soffware (i.e., the instructions
you write) controls hardware (i.e., computers).

You'll learn object-oriented programming—rtoday’s key programming methodology.
You'll create many soffware objects that model #hings in the real-world.

C++ is one of today’s most popular software development languages. This text pro-
vides an introduction to programming in C++11—the latest version standardized through
the International Organization for Standardization (ISO) and the International Electro-
technical Commission (IEC).

In use today are more than a billion general-purpose computers and billions more cell
phones, smartphones and handheld devices (such as tablet computers). According to a
study by eMarketer, the number of mobile Internet users will reach approximately 134
million by 2013.! Smartphone sales surpassed personal computer sales in 2011.2 Tablet
sales are expected to account for over 20% of all personal computer sales by 2015.% By
2014, the smartphone applications market is expected to exceed $40 billion.# This explo-
sive growth is creating significant opportunities for programming mobile applications.

1.2 Computers and the Internet in Industry and Research

These are exciting times in the computer field. Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/.
www.mashable.com/2012/02/03/smartphone-sales-overtake-pcs/.

www . forrester.com/ER/Press/Release/0,1769,1340,00.htm1.

Inc., December 2010/January 2011, pages 116-123.

L

lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, Groupon, Foursquare, Yahoo!, eBay and many more. These companies are major
employers of people who study computer science, computer engineering, information sys-
tems or related disciplines. At the time of this writing, Apple was the most valuable com-
pany in the world. Figure 1.1 provides a few examples of the ways in which computers are

.2 Computers and the Internet in Industry and Research

improving people’s lives in research, industry and society.

Description

Electronic health
records

Human Genome
Project

AMBER™ Alert

World Commu-
nity Grid

Cloud

computing

These might include a patient's medical history, prescriptions,
immunizations, lab results, allergies, insurance information and
more. Making this information available to health care providers
across a secure network improves patient care, reduces the probabil-
ity of error and increases overall efficiency of the health care system.

The Human Genome Project was founded to identify and analyze
the 20,000+ genes in human DNA. The project used computer pro-
grams to analyze complex genetic data, determine the sequences of
the billions of chemical base pairs that make up human DNA and
store the information in databases which have been made available
over the Internet to researchers in many fields.

The AMBER (America’s Missing: Broadcast Emergency Response)
Alert System is used to find abducted children. Law enforcement
notifies TV and radio broadcasters and state transportation officials,
who then broadcast alerts on TV, radio, computerized highway
signs, the Internet and wireless devices. AMBER Alert recently part-
nered with Facebook, whose users can “Like” AMBER Alert pages
by location to receive alerts in their news feeds.

People worldwide can donate their unused computer processing
power by installing a free secure software program that allows the
World Community Grid (www.worldcommunitygrid.org) to harness
unused capacity. This computing power, accessed over the Internet,
is used in place of expensive supercomputers to conduct scientific
research projects that are making a difference—providing clean
water to third-world countries, fighting cancer, growing more nutri-
tious rice for regions fighting hunger and more.

Cloud computing allows you to use software, hardware and infor-
mation stored in the “cloud”—i.e., accessed on remote computers
via the Internet and available on demand—rather than having it
stored on your personal computer. These services allow you to
increase or decrease resources to meet your needs at any given time,
so they can be more cost effective than purchasing expensive hard-
ware to ensure that you have enough storage and processing power
to meet your needs at their peak levels. Using cloud computing ser-
vices shifts the burden of managing these applications from the busi-
ness to the service provider, saving businesses money.

Fig. 1.1 | A few uses for computers. (Part | of 3.)

www.worldcommunitygrid.org

4

Chapter | Introduction to Computers and C++

Name Description

Medical imaging ~ X-ray computed tomography (CT) scans, also called CAT (comput-
erized axial tomography) scans, take X-rays of the body from hun-
dreds of different angles. Computers are used to adjust the intensity
of the X-rays, optimizing the scan for each type of tissue, then to
combine all of the information to create a 3D image. MRI scanners
use a technique called magnetic resonance imaging, also to produce
internal images non-invasively.

GPS Global Positioning System (GPS) devices use a network of satellites
to retrieve location-based information. Multiple satellites send time-
stamped signals to the GPS device, which calculates the distance to
each satellite based on the time the signal left the satellite and the
time the signal arrived. This information is used to determine the
exact location of the device. GPS devices can provide step-by-step
directions and help you locate nearby businesses (restaurants, gas
stations, etc.) and points of interest. GPS is used in numerous loca-
tion-based Internet services such as check-in apps to help you find
your friends (e.g., Foursquare and Facebook), exercise apps such as
RunKeeper that track the time, distance and average speed of your
outdoor jog, dating apps that help you find a match nearby and
apps that dynamically update changing traffic conditions.

Robots Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba vac-
uuming robot), entertainment (e.g., robotic pets), military combat,
deep sea and space exploration (e.g., NASA’s Mars rover Curiosity)
and more. RoboEarth (www. roboearth.org) is “a World Wide Web
for robots.” It allows robots to learn from each other by sharing
information and thus improving their abilities to perform tasks,
navigate, recognize objects and more.

E-mail, Instant Internet-based servers support all of your online messaging. E-mail
Messaging, messages go through a mail server that also stores the messages.
Video Chat Instant Messaging (IM) and Video Chat apps, such as AIM, Skype,
and FTP Yahoo! Messenger, Google Talk, Trillian, Microsoft's Messenger and

others allow you to communicate with others in real time by send-
ing your messages and live video through servers. FTP (file transfer
protocol) allows you to exchange files between multiple computers
(e.g., a client computer such as your desktop and a file server) over
the Internet.

Internet TV Internet TV set-top boxes (such as Apple TV, Google TV and TiVo)
allow you to access an enormous amount of content on demand,
such as games, news, movies, television shows and more, and they
help ensure that the content is streamed to your TV smoothly.

Streaming music ~ Streaming music services (such as Pandora, Spotify, Last.fm and
services more) allow you listen to large catalogues of music over the web, cre-
ate customized “radio stations” and discover new music based on
your feedback.

Fig. 1.1 | A few uses for computers. (Part 2 of 3.)

www.roboearth.org

1.3 Hardware and Software 5

Name Description

Game Analysts expect global video game revenues to reach $91 billion by
programming 2015 (www.vg247.com/2009/06/23/global-industry-analysts-

predicts-gaming-market-to-reach-91-billion-by-2015/). The
most sophisticated games can cost as much as $100 million to
develop. Activision’s Call of Duty: Black Ops—one of the best-selling
games of all time—earned $360 million in just one day
(www. forbes.com/sites/insertcoin/2011/03/11/call-of-duty-
black-ops-now-the-best-selling-video-game-of-all-time/)!
Online social gaming, which enables users worldwide to compete
with one another over the Internet, is growing rapidly. Zynga—cre-
ator of popular online games such as Words with Friends, CityVille
and others—was founded in 2007 and already has over 300 million
monthly users. To accommodate the growth in traffic, Zynga is add-
ing nearly 1,000 servers each week (techcrunch.com/2010/09/22/
zynga-moves-1-petabyte-of-data-daily-adds-1000-servers-a-
week/)!

Fig. 1.1 | A few uses for computers. (Part 3 of 3.)

1.3 Hardware and Software

Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! IBM’s
Sequoia supercomputer can perform over 16 quadrillion calculations per second (16.32
petaflops)P® To put that in perspective, the IBM Sequoia supercomputer can perform in one
second about 1.5 million calculations for every person on the planet! And—these “upper lim-
its” are growing quickly!

Computers process data under the control of sequences of instructions called com-
puter programs. These programs guide the computer through ordered actions specified by
people called computer programmers. The programs that run on a computer are referred
to as software. In this book, you’ll learn a key programming methodology that’s enhancing
programmer productivity, thereby reducing software development costs—object-oriented
programming.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software technol-
ogies. Computers that might have filled large rooms and cost millions of dollars decades
ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dol-
lars each. Ironically, silicon is one of the most abundant materials on Earth—it’s an ingre-
dient in common sand. Silicon-chip technology has made computing so economical that
computers have become a commodity.

5. www.top500.org/.

www.vg247.com/2009/06/23/global-industry-analysts-predicts-gaming-market-to-reach-91-billion-by-2015/
www.vg247.com/2009/06/23/global-industry-analysts-predicts-gaming-market-to-reach-91-billion-by-2015/
www.forbes.com/sites/insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-selling-video-game-of-all-time/
www.forbes.com/sites/insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-selling-video-game-of-all-time/
www.top500.org/

6 Chapter | Introduction to Computers and C++

1.3.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the costs of hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly. Every year or two, the capacities of computers have
approximately doubled inexpensively. This remarkable trend often is called Moore’s Law,
named for the person who identified it in the 1960s, Gordon Moore, co-founder of In-
tel—the leading manufacturer of the processors in today’s computers and embedded sys-
tems. Moore’s Law and related observations apply especially to the amount of memory
that computers have for programs, the amount of secondary storage (such as disk storage)
they have to hold programs and data over longer periods of time, and their processor
speeds—the speeds at which computers execute their programs (i.e., do their work). Sim-
ilar growth has occurred in the communications field, in which costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology im-
proves so quickly and costs fall so rapidly. Such phenomenal improvement is truly foster-
ing the Information Revolution.

1.3.2 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.2).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for pro-
cessing. Most information is entered into computers through keyboards,
touch screens and mouse devices. Other forms of input include receiving
voice commands, scanning images and barcodes, reading from secondary
storage devices (such as hard drives, DVD drives, Blu-ray Disc™ drives and
USB flash drives—also called “thumb drives” or “memory sticks”), receiving
video from a webcam and having your computer receive information from
the Internet (such as when you stream videos from YouTube™ or download
e-books from Amazon). Newer forms of input include position data from a
GPS device, and motion and orientation information from an accelerome-
ter in a smartphone or game controller (such as Microsoft® Kinect™,
Wii™ Remote and Sony’s PlayStation® Move).

Output unit This “shipping” section takes information that the computer has processed
and places it on various output devices to make it available for use outside
the computer. Most information that’s output from computers today is dis-
played on screens, printed on paper (“going green” discourages this), played
as audio or video on PCs and media players (such as Apple’s popular iPods)
and giant screens in sports stadiums, transmitted over the Internet or used
to control other devices, such as robots and “intelligent” appliances.

Fig. 1.2 | Logical units of a computer. (Part | of 2.)

.4 Data Hierarchy 7

Logical unit Description

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by
the output unit. Information in the memory unit is volatile—it’s typically
lost when the computer’s power is turned off. The memory unit is often
called either memory or primary memory. Main memories on desktop and
notebook computers commonly contain as much as 16 GB (GB stands for
gigabytes; a gigabyte is approximately one billion bytes).

Arithmetic This “manufacturing” section performs calculations, such as addition, sub-
and logicunit traction, multiplication and division. It also contains the decision mecha-
(ALU) nisms that allow the computer, for example, to compare two items from the

memory unit to determine whether they’re equal. In today’s systems, the
ALU is usually implemented as part of the next logical unit, the CPU.

Central This “administrative” section coordinates and supervises the operation of
p

processing the other sections. The CPU tells the input unit when information should

unit (CPU) be read into the memory unit, tells the ALU when information from the

memory unit should be used in calculations and tells the output unit when
to send information from the memory unit to certain output devices. Many
of today’s computers have multiple CPUs and, hence, can perform many
operations simultaneously. A multi-core processor implements multiple
processors on a single integrated-circuit chip—a dual-core processor has two
CPUs and a quad-core processor has four CPUs. Today’s desktop computers
have processors that can execute billions of instructions per second.

Secondary This is the long-term, high-capacity “warchousing” section. Programs or

storage unit data not actively being used by the other units normally are placed on sec-
ondary storage devices (e.g., your hard drive) until they’re again needed,
possibly hours, days, months or even years later. Information on secondary
storage devices is persistent—it’s preserved even when the computer’s power
is turned off. Secondary storage information takes much longer to access
than information in primary memory, but the cost per unit of secondary
storage is much less than that of primary memory. Examples of secondary
storage devices include CD drives, DVD drives and flash drives, some of
which can hold up to 768 GB. Typical hard drives on desktop and note-
book computers can hold up to 2 TB (TB stands for terabytes; a terabyte is
approximately one trillion bytes).

Fig. 1.2 | Logical units of a computer. (Part 2 of 2.)

1.4 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from bits to characters to fields, and so on. Figure 1.3
illustrates a portion of the data hierarchy. Figure 1.4 summarizes the data hierarchy’s
levels.

8 Chapter | Introduction to Computers and C++

Sally Black

Tom Blue
Judy Green File
Iris Orange
Randy Red
Judy Green Record

4

Judy Field

i
01001010 Byte (ASCII character J)
A
|
1 Bit

Fig. 1.3 | Data hierarchy.

Level Description

Bits The smallest data item in a computer can assume the value 0 or the value 1. Such a data
item is called a bit (short for “binary digit"—a digit that can assume one of two values).
It’s remarkable that the impressive functions performed by computers involve only the
simplest manipulations of 0s and 1s—examining a bits value, setting a bits value and
reversing a bits value (from 1 to 0 or from 0 to 1).

Characters It’s tedious for people to work with data in the low-level form of bits. Instead, they pre-
fer to work with decimal digits (0-9), letters (A—Z and a—z), and special symbols (e.g., $,
@, %, &, *, (,),— + ", 3, 2and /). Digits, letters and special symbols are known as
characters. The computer’s character set is the set of all the characters used to write
programs and represent data items. Computers process only 1s and 0s, so every charac-
ter is represented as a pattern of 1s and 0s. The Unicode® character set contains charac-
ters for many of the world’s languages. C++ supports several character sets, including
16-bit Unicode® characters that are composed of two bytes, each composed of eight
bits. See Appendix B for more information on the ASCII (American Standard Code
for Information Interchange) character set—the popular subset of Unicode that repre-
sents uppercase and lowercase letters, digits and some common special characters.

Fields Just as characters are composed of bits, fields are composed of characters or bytes. A
field is a group of characters or bytes that conveys meaning. For example, a field con-
sisting of uppercase and lowercase letters could be used to represent a person’s name,
and a field consisting of decimal digits could represent a person’s age.

Fig. 1.4 | Levels of the data hierarchy. (Part | of 2.)

[.5 Machine Languages, Assembly Languages and High-Level Languages 9

Level Description

Records Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

* Employee identification number (a whole number)

* Name (a string of characters)

* Address (a string of characters)

* Hourly pay rate (a number with a decimal point)

* Year-to-date earnings (a number with a decimal point)

* Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the fields belong
to the same employee. A company might have many employees and a payroll record for
each one.

Files A file is a group of related records. [Noze: More generally, a file contains arbitrary data
in arbitrary formats. In some operating systems, a file is viewed simply as a sequence of
bytes—any organization of the bytes in a file, such as organizing the data into records, is
a view created by the application programmer.] It’s not unusual for an organization to
have many files, some containing billions, or even trillions, of characters of informa-
tion.

Database A database is an electronic collection of data that’s organized for easy access and manip-
ulation. The most popular database model is the relational database in which data is
stored in simple zables. A table includes records and fields. For example, a table of stu-
dents might include first name, last name, major, year, student ID number and grade
point average. The data for each student is a record, and the individual pieces of infor-
mation in each record are the fields. You can search, sort and manipulate the data based
on its relationship to multiple tables or databases. For example, a university might use
data from the student database in combination with databases of courses, on-campus
housing, meal plans, etc.

Fig. 1.4 | Levels of the data hierarchy. (Part 2 of 2.)

1.5 Machine Languages, Assembly Languages and High-
Level Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate mransiation steps.

Machine Languages

Any computer can directly understand only its own machine language (also called ma-
chine code), defined by its hardware architecture. Machine languages generally consist of
numbers (ultimately reduced to 1s and 0s). Such languages are cumbersome for humans.

Assembly Languages
Programming in machine language was simply too slow and tedious for most program-
mers. Instead, they began using English-like abbreviations to represent elementary opera-

10 Chapter | Introduction to Computers and C++

tions. These abbreviations formed the basis of assembly languages. Translator programs
called assemblers were developed to convert assembly-language programs to machine lan-
guage. Although assembly-language code is clearer to humans, it’s incomprehensible to
computers until translated to machine language.

High-Level Languages
To speed up the programming process further, high-level languages were developed in
which single statements could be written to accomplish substantial tasks. High-level lan-
guages, such as C++, Java, C# and Visual Basic, allow you to write instructions that look
more like everyday English and contain commonly used mathematical expressions. Transla-
tor programs called compilers convert high-level language programs into machine language.
The process of compiling a large high-level language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly (without the need for compilation),
although more slowly than compiled programs. Scripting languages such as the popular
web languages JavaScript and PHP are processed by interpreters.

- Performance Tip 1.1
o Interpreters have an advantage over compilers in Internet scripting. An interpreted pro-
Sl gram can begin executing as soon as it's downloaded to the client’s machine, without need-
ing to be compiled before it can execute. On the downside, interpreted scripts generally run
slower than compiled code.

1.6 C++

C++ evolved from C, which was developed by Dennis Ritchie at Bell Laboratories. C is
available for most computers and is hardware independent. With careful design, it’s pos-
sible to write C programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes called hardware
platforms) unfortunately led to many variations. A standard version of C was needed. The
American National Standards Institute (ANSI) cooperated with the International Organi-
zation for Standardization (ISO) to standardize C worldwide; the joint standard docu-
ment was published in 1990 and is referred to as ANSI/ISO 9899: 1990.

C11 is the latest ANSI standard for the C programming language. It was developed
to evolve the C language to keep pace with increasingly powerful hardware and ever more
demanding user requirements. C11 also makes C more consistent with C++. For more
information on C and C11, see our book C How to Program, 7/e and our C Resource
Center (located at waw.deitel.com/C).

C++, an extension of C, was developed by Bjarne Stroustrup in 1979 at Bell Labora-
tories. Originally called “C with Classes”, it was renamed to C++ in the early 1980s. C++
provides a number of features that “spruce up” the C language, but more importantly, it
provides capabilities for object-oriented programming.

You'll begin developing customized, reusable classes and objects in Chapter 3, Intro-
duction to Classes, Objects and Strings. The book is object oriented, where appropriate,
from the start and throughout the text.

www.deitel.com/C

1.7 Programming Languages 11

We also provide an optional automated teller machine (ATM) case study in
Chapters 25-26, which contains a complete C++ implementation. The case study presents
a carefully paced introduction to object-oriented design using the UML—an industry
standard graphical modeling language for developing object-oriented systems. We guide
you through a friendly design experience intended for the novice.

C++ Standard Library

C++ programs consist of pieces called classes and functions. You can program each piece
yourself, but most C++ programmers take advantage of the rich collections of classes and
functions in the C++ Standard Library. Thus, there are really two parts to learning the
C++ “world.” The first is learning the C++ language itself; the second is learning how to
use the classes and functions in the C++ Standard Library. We discuss many of these classes
and functions. P. J. Plauger’s book, The Standard C Library (Upper Saddle River, NJ:
Prentice Hall PTR, 1992), is a must read for programmers who need a deep understanding
of the ANSI C library functions included in C++. Many special-purpose class libraries are
supplied by independent software vendors.

Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use
58 existing pieces wherever possible. Called software reuse, this practice is central to object-
oriented programming.

* 5“ Software Engineering Observation 1.1
i =

_ When programming in C++, you typically will use the following building blocks: classes
58 and functions from the C++ Standard Library, classes and functions you and your
colleagues create and classes and functions from various popular third-party libraries.

¥ 5“ Software Engineering Observation 1.2
& -

The advantage of creating your own functions and classes is that you’ll know exactly
how they work. You’ll be able to examine the C++ code. The disadvantage is the time-con-
suming and complex effort that goes into designing, developing and maintaining new
functions and classes that are correct and that operate efficiently.

a3 Performance Tip 1.2

tﬁ'ﬂ Using C++ Standard Library functions and classes instead of writing your own versions

S can improve program performance, because they're written carefully to perform efficiently.
This technique also shortens program development time.

- Portability Tip 1.1
Using C++ Standard Library functions and classes instead of writing your own improves
el program portability, because theyre included in every C++ implementation.

1.7 Programming Languages

In this section, we provide brief comments on several popular programming languages
(Fig. 1.5).

Chapter | Introduction to Computers and C++

Programming

language Description

Fortran Fortran (FORmula TRANslator) was developed by IBM Corpo-
ration in the mid-1950s to be used for scientific and engineering
applications that require complex mathematical computations.
I¢’s still widely used and its latest versions support object-oriented
programming.

COBOL COBOL (COmmon Business Oriented Language) was devel-
oped in the late 1950s by computer manufacturers, the U.S. gov-
ernment and industrial computer users based on a language
developed by Grace Hopper, a career U.S. Navy officer and com-
puter scientist. COBOL is still widely used for commercial appli-
cations that require precise and efficient manipulation of large
amounts of data. Its latest version supports object-oriented pro-
gramming.

Pascal Research in the 1960s resulted in structured programming—a dis-
ciplined approach to writing programs that are clearer, easier to
test and debug and easier to modify than large programs pro-
duced with previous techniques. One of the more tangible results
of this research was the development of Pascal by Professor
Niklaus Wirth in 1971. It was designed for teaching structured
programming and was popular in college courses for several
decades.

Ada Ada, based on Pascal, was developed under the sponsorship of
the U.S. Department of Defense (DOD) during the 1970s and
carly 1980s. The DOD wanted a single language that would fill
most of its needs. The Pascal-based language was named after
Lady Ada Lovelace, daughter of the poet Lord Byron. She’s cred-
ited with writing the world’s first computer program in the early
1800s (for the Analytical Engine mechanical computing device
designed by Charles Babbage). Ada also supports object-oriented
programming.

Basic Basic was developed in the 1960s at Dartmouth College to famil-
iarize novices with programming techniques. Many of its latest
versions are object oriented.

C C was implemented in 1972 by Dennis Ritchie at Bell Laborato-
ries. It initially became widely known as the UNIX operating sys-
tem’s development language. Today, most of the code for general-
purpose operating systems is written in C or C++.

Objective-C ~ Objective-C is an object-oriented language based on C. It was
developed in the early 1980s and later acquired by NeXT, which
in turn was acquired by Apple. It has become the key program-
ming language for the OS X operating system and all iOS-pow-
ered devices (such as iPods, iPhones and iPads).

Fig. 1.5 | Some other programming languages. (Part | of 3.)

Programming

language

Java

Visual Basic

C#

PHP

Perl

Python

JavaScript

1.7 Programming Languages

Description

Sun Microsystems in 1991 funded an internal corporate research
project led by James Gosling, which resulted in the C++-based
object-oriented programming language called Java. A key goal of
Java is to be able to write programs that will run on a great vari-
ety of computer systems and computer-control devices. This is
sometimes called “write once, run anywhere.” Java is used to
develop large-scale enterprise applications, to enhance the func-
tionality of web servers (the computers that provide the content
we see in our web browsers), to provide applications for con-
sumer devices (e.g., smartphones, tablets, television set-top
boxes, appliances, automobiles and more) and for many other
purposes. Java is also the key language for developing Android
smartphone and tablet apps.

Microsoft’s Visual Basic language was introduced in the early
1990s to simplify the development of Microsoft Windows appli-
cations. Its latest versions support object-oriented programming.

Microsoft’s three object-oriented primary programming lan-
guages are Visual Basic (based on the original Basic), Visual C++
(based on C++) and C# (based on C++ and Java, and developed
for integrating the Internet and the web into computer applica-
tions).

PHP is an object-oriented, “open-source” (see Section 1.11.2)
“scripting” language supported by a community of users and
developers and is used by numerous websites including Wikipe-
dia and Facebook. PHP is platform independent—implementa-
tions exist for all major UNIX, Linux, Mac and Windows
operating systems. PHP also supports many databases, including
MySQL.

Perl (Practical Extraction and Report Language), one of the most
widely used object-oriented scripting languages for web pro-
gramming, was developed in 1987 by Larry Wall. It features rich
text-processing capabilities and flexibility.

Python, another object-oriented scripting language, was released
publicly in 1991. Developed by Guido van Rossum of the
National Research Institute for Mathematics and Computer Sci-
ence in Amsterdam (CWI), Python draws heavily from Modula-
3—a systems programming language. Python is “extensible”—it
can be extended through classes and programming interfaces.
JavaScript is the most widely used scripting language. It’s primar-
ily used to add programmability to web pages—for example, ani-
mations and interactivity with the user. It’s provided with all
major web browsers.

Fig. 1.5 | Some other programming languages. (Part 2 of 3.)

13

14 Chapter | Introduction to Computers and C++

Programming

language Description

Ruby on Rails Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an
open-source, object-oriented programming language with a sim-
ple syntax that’s similar to Perl and Python. Ruby on Rails com-
bines the scripting language Ruby with the Rails web application
framework developed by 37Signals. Their book, Gezting Real
(available free at gettingreal.37signals.com/toc.php), is a
must read for web developers. Many Ruby on Rails developers
have reported productivity gains over other languages when
developing database-intensive web applications. Ruby on Rails
was used to build Twitter’s user interface.

Scala Scala (www.scala-Tang.org/node/273)—short for “scalable lan-
guage’—was designed by Martin Odersky, a professor at Ecole
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
Released in 2003, Scala uses both the object-oriented program-
ming and functional programming paradigms and is designed to
integrate with Java. Programming in Scala can reduce the
amount of code in your applications significantly. Twitter and
Foursquare use Scala.

Fig. 1.5 | Some other programming languages. (Part 3 of 3.)

1.8 Introduction to Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precise-
ly—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable soft-
ware components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any 7oun can be reasonably represented as
a software object in terms of astributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers have discovered that using a
modular, object-oriented design-and-implementation approach can make software-devel-
opment groups much more productive than was possible with earlier techniques—object-
oriented programs are often easier to understand, correct and modify.

The Automobile as an Object

Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel /ides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

http://www.scala-lang.org/node/273

[.8 Introduction to Object Technology 15

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Member Functions and Classes

Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a member function. The member function houses
the program statements that actually perform its task. It hides these statements from its
user, just as the accelerator pedal of a car hides from the driver the mechanisms of making
the car go faster. In C++, we create a program unit called a class to house the set of member
functions that perform the class’s tasks. For example, a class that represents a bank account
might contain one member function to deposiz money to an account, another to withdraw
money from an account and a third to 7nquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

Messages and Member Function Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a member function call that tells a member function of the object to perform its task.
For example, a program might call a particular bank account object’s deposiz member func-
tion to increase the account’s balance.

Attributes and Data Members

A car, besides having capabilities to accomplish tasks, also has astributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but 7o how much is in the tanks of ozher cars.

16 Chapter | Introduction to Computers and C++

An object, similarly, has actributes that it carries along as ic’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank account object has
a balance attribute that represents the amount of money in the account. Each bank account
object knows the balance in the account it represents, but 7oz the balances of the other
accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation

Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object’s
attributes and member functions are intimately related. Objects may communicate with
one another, but they’re normally not allowed to know how other objects are implement-
ed—implementation details are hidden within the objects themselves. This information
hiding, as we’ll see, is crucial to good software engineering.

Inberitance

A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly 75 an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)

Soon you’ll be writing programs in C++. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of thousands of software developers building the
next U.S. air traffic control system? For projects so large and complex, you should not sim-
ply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you'd go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C++ are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)

Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of zzy OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 3
and 4, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our optional ATM Software Engineering Case Study in Chapters 25-26 we
present a simple subset of the UMLs features as we guide you through an object-oriented
design experience.

1.9 Typical C++ Development Environment 17

1.9 Typical C++ Development Environment

C++ systems generally consist of three parts: a program development environment, the
language and the C++ Standard Library. C++ programs typically go through six phases:
edit, preprocess, compile, link, load and execute. The following discussion explains a typ-
ical C++ program development environment.

Phase 1: Editing a Program

Phase 1 consists of editing a file with an editor program, normally known simply as an ediror
(Fig. 1.6). You type a C++ program (typically referred to as source code) using the editor,
make any necessary corrections and save the program on a secondary storage device, such as
your hard drive. C++ source code filenames often end with the . cpp, . cxx, .cc or .C exten-
sions (note that C is in uppercase) which indicate that a file contains C++ source code. See
the documentation for your C++ compiler for more information on file-name extensions.

Phase I:

Programmer creates program
in the editor and stores it on
disk

Editor

Fig. 1.6 | Typical C++ development environment—editing phase.

Two editors widely used on Linux systems are vi and emacs. C++ software packages
for Microsoft Windows such as Microsoft Visual C++ (microsoft.com/express) have
editors integrated into the programming environment. You can also use a simple text
editor, such as Notepad in Windows, to write your C++ code.

For organizations that develop substantial information systems, integrated develop-
ment environments (IDEs) are available from many major software suppliers. IDEs pro-
vide tools that support the software-development process, including editors for writing
and editing programs and debuggers for locating logic errors—errors that cause programs
to execute incorrectly. Popular IDEs include Microsoft® Visual Studio 2012 Express Edi-
tion, Dev C++, NetBeans, Eclipse, Apple’s Xcode and CodeLite.

Phase 2: Preprocessing a C++ Program

In Phase 2, you give the command to compile the program (Fig. 1.7). In a C++ system, a
preprocessor program executes automatically before the compiler’s translation phase be-
gins (so we call preprocessing Phase 2 and compiling Phase 3). The C++ preprocessor
obeys commands called preprocessing directives, which indicate that certain manipula-
tions are to be performed on the program before compilation. These manipulations usu-
ally include other text files to be compiled, and perform various text replacements. The
most common preprocessing directives are discussed in the early chapters; a detailed dis-
cussion of preprocessor features appears in Appendix E, Preprocessor.

Phase 2:
Preprocessor program
processes the code

Preprocessor

Fig. 1.7 | Typical C++ development environment—preprocessor phase.

18 Chapter | Introduction to Computers and C++

Phase 3: Compiling a C++ Program
In Phase 3, the compiler translates the C++ program into machine-language code—also
referred to as object code (Fig. 1.8).

Phase 3:

Compiler creates
object code and stores
it on disk

Compiler

Fig. 1.8 | Typical C++ development environment—compilation phase.

Phase 4: Linking

Phase 4 is called linking. C++ programs typically contain references to functions and data
defined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project (Fig. 1.9). The object code produced by the C++
compiler typically contains “holes” due to these missing parts. A linker links the object code
with the code for the missing functions to produce an executable program (with no missing
pieces). If the program compiles and links correctly, an executable image is produced.

Phase 4:

Linker links the object

code with the libraries,
creates an executable file and
stores it on disk

Linker

Fig. 1.9 | Typical C++ development environment—linking phase.

Phase 5: Loading

Phase 5 is called loading. Before a program can be executed, it must first be placed in
memory (Fig. 1.10). This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

Primary
Memory

Loader —_—

Phase 5:
Loader puts program
in memory

Fig. 1.10 | Typical C++ development environment—Ioading phase.

.10 Test-Driving a C++ Application 19

Phase 6: Execution

Finally, the computer, under the control of its CPU, executes the program one instruction
at a time (Fig. 1.11). Some modern computer architectures can execute several instruc-
tions in parallel.

Primary
Memory
CPU -
Phase 6:
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes

Fig. 1.11 | Typical C++ development environment—execution phase.

Problems That May Occur at Execution Time

Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we'll discuss throughout this book. For example, an executing program
might try to divide by zero (an illegal operation for integer arithmetic in C++). This would
cause the C++ program to display an error message. If this occurred, you’d have to return
to the edit phase, make the necessary corrections and proceed through the remaining phas-
es again to determine that the corrections fixed the problem(s). [/Nore: Most programs in
C++ input or output data. Certain C++ functions take their input from cin (the standard
input stream; pronounced “see-in”), which is normally the keyboard, but cin can be re-
directed to another device. Data is often output to cout (the standard output stream; pro-
nounced “see-out”), which is normally the computer screen, but cout can be redirected to
another device. When we say that a program prints a result, we normally mean that the
result is displayed on a screen. Data may be output to other devices, such as disks and hard-
copy printers. There is also a standard error stream referred to as cerr. The cerr stream
(normally connected to the screen) is used for displaying error messages.

T

. Errors such as division by zero occur as a program runs, so they're called runtime errors
f £

or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

—‘% Common Programming Error 1.1

1.10 Test-Driving a C++ Application

In this section, you'll run and interact with your first C++ application. You’ll begin by run-
ning an entertaining guess-the-number game, which picks a number from 1 to 1000 and
prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,

20 Chapter | Introduction to Computers and C++

the application indicates whether your guess is higher or lower than the correct number.
There is no limit on the number of guesses you can make. [Noze: For this test drive only,
we've modified this application from the exercise you'll be asked to create in Chapter 6,
Functions and an Introduction to Recursion. Normally this application randomly selects
the correct answer as you execute the program. The modified application uses the same
correct answer every time the program executes (though this may vary by compiler), so you
can use the same guesses we use in this section and see the same results as we walk you
through interacting with your first C++ application.]

We'll demonstrate running a C++ application using the Windows Command Prompt
and a shell on Linux. The application runs similarly on both platforms. Many develop-
ment environments are available in which you can compile, build and run C++ applica-
tions, such as GNU C++, Microsoft Visual C++, Apple Xcode, Dev C++, CodelLite,
NetBeans, Eclipse etc. Consult your instructor for information on your specific develop-
ment environment.

In the following steps, you’ll run the application and enter various numbers to guess
the correct number. The elements and functionality that you see in this application are
typical of those you’ll learn to program in this book. We use fonts to distinguish between
features you see on the screen (e.g., the Command Prompt) and elements that are not
directly related to the screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif Helvetica font and emphasize filenames, text displayed
by an application and values you should enter into an application (e.g., GuessNumber or
500) in a sans-serif Lucida font. As you've noticed, the defining occurrence of each
term is set in blue, bold type. For the figures in this section, we point out significant parts
of the application. To make these features more visible, we’ve modified the background
color of the Command Prompt window (for the Windows test drive only). To modify the
Command Prompt colors on your system, open a Command Prompt by selecting Start > All
Programs > Accessories > Command Prompt, then right click the title bar and select Prop-
erties. In the "Command Prompt" Properties dialog box that appears, click the Colors tab,
and select your preferred text and background colors.

Running a C++ Application from the Windows Command Prompt

1. Checking your setup. It's important to read the Before You Begin section at
www . deitel.com/books/cpphtp9/ to make sure that you've copied the book’s
examples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enter (Fig. 1.12). The
command cd is used to change directories.

he=cd C:\examples’ch01\GuessNumber‘\Windows il

:\examples'\ch01\GuessNumber\Windows>

Fig. 1.12 | Opening a Command Prompt window and changing the directory.

www.deitel.com/books/cpphtp9/

.10 Test-Driving a C++ Application 21

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber
(Fig. 1.13) and press Enter. [Note: GuessNumber . exe is the actual name of the ap-
plication; however, Windows assumes the . exe extension by default.]

D[
:\examples' ch01\GuessNumber\Windows>GuessNumber :ll
I have a number between 1 and 1000.
an you guess my number?
Please type your first guess.
? =

Fig. 1.13 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.13). At the prompt, enter 500 (Fig. 1.14).

s \examp |les\ch01\GuessNumber \Windows>GuessNumber
I have a number between 1 and 1000. =l
an you guess my number?
Please type your first guess.
7 500

oo high. Try again.

Fig. 1.14 | Entering your first guess.

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.15). The application again displays "Too high. Try
again.", because the value you entered is still greater than the number that the
application chose as the correct guess.

s \examp les\ch01\GuessNumber \Windows>GuessNumber |
I have a number between 1 and 1000. =l
an you guess my number?
Please type your first guess.
7 500
oo high. Try again.
7 250
oo high. Try again.
?
~|

Fig. 1.15 | Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You
guessed the number!" (Fig. 1.16).

22 Chapter | Introduction to Computers and C++

oo high. Try again.

7 156

oo high. Try again.
7 140

oo high. Try again.
7 132

oo high. Try again.
7 128

oo low. Try again.
7 130

oo low. Try again
213,

Excellent! You guessed the number!
ould you like to play again (y or n)?

Fig. 1.16 | Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess correctly, the
application asks if you’d like to play another game (Fig. 1.16). At the "Would you
Tike to play again (y or n)?" prompt, entering the one character y causes the
application to choose a new number and displays the message "PTease type your
first guess." followed by a question mark prompt (Fig. 1.17) so you can make
your first guess in the new game. Entering the character n ends the application
and returns you to the application’s directory at the Command Prompt
(Fig. 1.18). Each time you execute this application from the beginning (i.e., Step
3), it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

Excellent! You guessed the number!
ould you like to play again (y or n)? y

an you guess my number?
Please type your first guess.
7

Fig. 1.17 | Playing the game again.

Excellent! You guessed the number!
ould you like to play again (y or n)? n

:\examples'ch01\GuessNumber\Windows:>

Fig. 1.18 | Exiting the game.

.10 Test-Driving a C++ Application 23

Running a C++ Application Using GNU C++ with Linux

For this test drive, we assume that you know how to copy the examples into your home
directory. Please see your instructor if you have any questions regarding copying the files
to your Linux system. Also, for the figures in this section, we use a bold highlight to point
out the user input required by each step. The prompt in the shell on our system uses the
tilde (~) character to represent the home directory, and each prompt ends with the dollar
sign ($) character. The prompt will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.19) by typing

cd Examples/ch01/GuessNumber/GNU_L1inux

then pressing Enter. The command cd is used to change directories.

~$ cd examples/ch01/GuessNumber/GNU_Linux
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.19 | Changing to the GuessNumber application’s directory.
2. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing
g++ GuessNumber.cpp -o GuessNumber

as in Fig. 1.20. This command compiles the application and produces an execut-
able file called GuessNumber.

~/examples/ch01/GuessNumber/GNU_Linux$ g++ GuessNumber.cpp -o GuessNumber
~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.20 | Compiling the GuessNumber application using the g++ command.

3. Running the GuessNumber application. To run the executable file GuessNumber,
type ./GuessNumber at the next prompt, then press Enzer (Fig. 1.21).

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

?

Fig. 1.21 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.21). At the prompt, enter 500 (Fig. 1.22). [/Nore: This is the same appli-
cation that we modified and test-drove for Windows, but the outputs could vary
based on the compiler being used.]

24 Chapter | Introduction to Computers and C++

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.22). At the next prompt, enter 250 (Fig. 1.23). This time
the application displays "Too Tow. Try again.", because the value you entered is
less than the correct guess.

6. Entering additional guesses. Continue to play the game (Fig. 1.24) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number."

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

2

Fig. 1.22 | Entering an initial guess.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.
? 250

Too low. Try again.
?

Fig. 1.23 | Entering a second guess and receiving feedback.

Too low. Try again.

? 375

Too low. Try again.

? 437

Too high. Try again.
7 406

Too high. Try again.
7 391

Too high. Try again.
7 383

Too low. Try again.

? 387

Too high. Try again.
? 385

Too high. Try again.
7 384

Excellent! You guessed the number.
Would you 1like to play again (y or n)?

Fig. 1.24 | Entering additional guesses and guessing the correct number.

.11 Operating Systems 25

7. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you'd like to play another game. At the "Would
you Tike to play again (y or n)?" prompt, entering the one character y causes
the application to choose a new number and displays the message "Please type
your first guess." followed by a question mark prompt (Fig. 1.25) so you can
make your first guess in the new game. Entering the character n ends the appli-
cation and returns you to the application’s directory in the shell (Fig. 1.26). Each
time you execute this application from the beginning (i.e., Step 3), it will choose
the same numbers for you to guess.

Excellent! You guessed the number.
Would you 1ike to play again (y or n)? y

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.25 | Playing the game again.

Excellent! You guessed the number.
Would you 1ike to play again (y or n)? n

~/examples/ch01/GuessNumber/GNU_Linux$

Fig. 1.26 | Exiting the game.

I.11 Operating Systems

Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. They provide services that allow
cach application to execute safely, efficiently and concurrently (i.c., in parallel) with other
applications. The software that contains the core components of the operating system is
called the kernel. Popular desktop operating systems include Linux, Windows and OS X
(formerly called Mac OS X)—we used all three in developing this book. Popular mobile
operating systems used in smartphones and tablets include Google’s Android, Apple’s iOS
(for iPhone, iPad and iPod Touch devices), BlackBerry OS and Windows Phone. You can
develop applications in C++ for all of the following key operating systems, including sev-
eral of the latest mobile operating systems.

I1.11.1 Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system that users interacted with by #yping commands. Windows borrowed from
many concepts (such as icons, menus and windows) developed by Xerox PARC and pop-
ularized by early Apple Macintosh operating systems. Windows 8 is Microsoft’s latest op-

26 Chapter | Introduction to Computers and C++

erating system—its features include enhancements to the user interface, faster startup
times, further refinement of security features, touch-screen and multitouch support, and
more. Windows is a proprietary operating system—it’s controlled by Microsoft exclusively.
Windows is by far the world’s most widely used desktop operating system.

I.11.2 Linux—An Open-Source Operating System

The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software departs from the proprietary software development style that dom-
inated software’s early years. With open-source development, individuals and companies
contribute their efforts in developing, maintaining and evolving software in exchange for
the right to use that software for their own purposes, typically at 7o charge. Open-source
code is often scrutinized by a much larger audience than proprietary software, so errors of-
ten get removed faster. Open source also encourages innovation. Enterprise systems com-
panies, such as IBM, Oracle and many others, have made significant investments in Linux
open-source development.

Some key organizations in the open-source community are the Eclipse Foundation
(the Eclipse Integrated Development Environment helps programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides tools for managing open-source
projects—it has hundreds of thousands of them under development). Rapid improve-
ments to computing and communications, decreasing costs and open-source software have
made it much easier and more economical to create a software-based business now than
just a decade ago. A great example is Facebook, which was launched from a college dorm
room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers and is
popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’s Windows and Apple’s OS X, Linux source code (the
program code) is available to the public for examination and modification and is free to
download and install. As a result, Linux users benefit from a community of developers
actively debugging and improving the kernel, and the ability to customize the operating
system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. Linux has become extremely popular on servers and in embedded sys-
tems, such as Google’s Android-based smartphones.

1.11.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad” and iPod Touch®
Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984.

.12 The Internet and World Wide Web 27

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. At the time of this writing, Objective-C was comparable
in popularity to C++.° Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988,
NeXT licensed Objective-C from StepStone and developed an Objective-C compiler and
libraries which were used as the platform for the NeXTSTEP operating system’s user inter-
face and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s OS X operating
system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is
derived from Apple’s OS X and is used in the iPhone, iPad and iPod Touch devices.

1.11.4 Google’s Android

Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Experienced Java programmers can quickly dive into Android de-
velopment. One benefit of developing Android apps is the openness of the platform. The
operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 84 by 2011—was formed to continue developing Android. As of June
2012, more than 900,000 Android devices were being activated each day!” Android smart-
phones are now outselling iPhones in the United States.® The Android operating system
is used in numerous smartphones (such as the Motorola Droid, HTC One S, Samsung
Galaxy Nexus and many more), e-reader devices (such as the Kindle Fire and Barnes and
Noble Nook™), tablet computers (such as the Dell Streak and the Samsung Galaxy Tab),
in-store touch-screen kiosks, cars, robots, multimedia players and more.

1.12 The Internet and World Wide Web

The Internet—a global network of computers—was made possible by the convergence of
computing and communications technologies. In the late 1960s, ARPA (the Advanced Re-

search Projects Agency) rolled out blueprints for networking the main computer systems

of about a dozen ARPA-funded universities and research institutions. Academic research

was about to take a giant leap forward. ARPA proceeded to implement the ARPANET,

which eventually evolved into today’s Internet. It rapidly became clear that communicat-

ing quickly and easily via electronic mail was the key early benefit of the ARPANET. This

is true even today on the Internet, which facilitates communications of all kinds among
the world’s Internet users.

Packet Switching

A primary goal for ARPANET was to allow multiple users to send and receive information
simultaneously over the same communications paths (e.g., phone lines). The network op-
erated with a technique called packet switching, in which digital data was sent in small
bundles called packets. The packets contained addyress, error-control and sequencing infor-

6. www.tiobe.com/index.php/content/paperinfo/tpci/index.html.
7. mashable.com/2012/06/11/900000-android-devices/.
8. www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html.

www.tiobe.com/index.php/content/paperinfo/tpci/index.html
www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html

28 Chapter | Introduction to Computers and C++

mation. The address information allowed packets to be rouzed to their destinations. The
sequencing information helped in reassembling the packets—which, because of complex
routing mechanisms, could arrive out of order—into their original order for presentation
to the recipient. Packets from different senders were intermixed on the same lines to effi-
ciently use the available bandwidth. This packet-switching technique greatly reduced
transmission costs, as compared with the cost of dedicated communications lines.

The network was designed to operate without centralized control. If a portion of the
network failed, the remaining working portions would still route packets from senders to
receivers over alternative paths for reliability.

TCr/IP
The protocol (i.e., set of rules) for communicating over the ARPANET became known as
TCP—the Transmission Control Protocol. TCP ensured that messages were properly
routed from sender to receiver and that they arrived intact.

As the Internet evolved, organizations worldwide were implementing their own net-
works. One challenge was to get these different networks to communicate. ARPA accom-
plished this with the development of IP—the Internet Protocol, truly creating a network

of networks, the current architecture of the Internet. The combined set of protocols is now
commonly called TCP/IP.

World Wide Web, HTML, HTTP

The World Wide Web allows you to locate and view multimedia-based documents on al-
most any subject over the Internet. The web is a relatively recent creation. In 1989, Tim
Berners-Lee of CERN (the European Organization for Nuclear Research) began to devel-
op a technology for sharing information via hyperlinked text documents. Berners-Lee
called his invention the HyperText Markup Language (HTML). He also wrote commu-
nication protocols to form the backbone of his new information system, which he called
the World Wide Web. In particular, he wrote the Hypertext Transfer Protocol
(HTTP)—a communications protocol used to send information over the web. The URL
(Uniform Resource Locator) specifies the address (i.e., location) of the web page displayed
in the browser window. Each web page on the Internet is associated with a unique URL.
Hypertext Transfer Protocol Secure (HTTPS) is the standard for transferring encrypted
data on the web.

Mosaic, Netscape, Emergence of Web 2.0
Web use exploded with the availability in 1993 of the Mosaic browser, which featured a
user-friendly graphical interface. Marc Andreessen, whose team at the National Center for
Supercomputing Applications developed Mosaic, went on to found Netscape, the compa-
ny that many people credit with igniting the explosive Internet economy of the late 1990s.
In 2003 there was a noticeable shift in how people and businesses were using the web
and developing web-based applications. The term Web 2.0 was coined by Dale Dougherty
of O’Reilly Media® in 2003 to describe this trend. Generally, Web 2.0 companies use the
web as a platform to create collaborative, community-based sites (e.g., social networking
sites, blogs, wikis).

9. T. O’Reilly, “What is Web 2.0: Design Patterns and Business Models for the Next Generation
of Software.” September 2005 <http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.htm]?page=1>.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1

1.13 Some Key Software Development Terminology 29

Companies with Web 2.0 characteristics are Google (web search), YouTube (video
sharing), Facebook (social networking), Twitter (microblogging), Groupon (social com-
merce), Foursquare (mobile check-in), Salesforce (business software offered as online ser-
vices “in the cloud”), Craigslist (mostly free classified listings), Flickr (photo sharing),
Skype (Internet telephony and video calling and conferencing) and Wikipedia (a free
online encyclopedia).

Web 2.0 involves the users—not only do they create content, but they help organize
it, share it, remix it, critique it, update it, etc. Web 2.0 is a conversation, with everyone
having the opportunity to speak and share views. Companies that understand Web 2.0
realize that their products and services are conversations as well.

Architecture of Participation

Web 2.0 embraces an architecture of participation—a design that encourages user inter-
action and community contributions. You, the user, are the most important aspect of Web
2.0—so important, in fact, that in 2006, 7IME magazine’s “Person of the Year” was
“You.”!" The article recognized the social phenomenon of Web 2.0—the shift away from
a powerful few to an empowered many. Popular blogs now compete with traditional media
powerhouses, and many Web 2.0 companies are built almost entirely on user-generated
content. For websites like Facebook, Twitter, YouTube, eBay and Wikipedia users create
the content, while the companies provide the platforms on which to enter, manipulate and
share the information.

1.13 Some Key Software Development Terminology

Figure 1.27 lists a number of buzzwords that you'll hear in the software development com-
munity. We've created Resource Centers on most of these topics, with more on the way.

Technology Description

Ajax Ajax is one of the premier Web 2.0 software technologies. Ajax helps Inter-
net-based applications perform like desktop applications—a difficult task,
given that such applications suffer transmission delays as data is shuttled
back and forth between your computer and servers on the Internet.

Agile software Agile software development is a set of methodologies that try to get soft-
development ware implemented faster and using fewer resources than previous method-
ologies. Check out the Agile Alliance (ww.agilealliance.org) and the
Agile Manifesto (www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It’s widely
employed with agile development methodologies. Many IDEs include
refactoring tools to do major portions of the reworking automatically.

Fig. 1.27 | Software technologies. (Part | of 2.)

10. www.time.com/time/magazine/article/0,9171,1570810,00.htm1.

www.time.com/time/magazine/article/0,9171,1570810,00.html
www.agilealliance.org
www.agilemanifesto.org

30 Chapter | Introduction to Computers and C++

Technology Description

Design patterns Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries to
enumerate those recurring patterns, encouraging software designers to reuse
them to develop better-quality software using less time, money and effort.

LAMP LAMRP is an acronym for the set of open-source technologies that many
developers use to build web applications—it stands for Linux, Apache,
MySQL and PHP (or Petl or Python—two other languages used for similar
purposes). MySQL is an open-source database management system. PHP
is the most popular open-source server-side Internet “scripting” language
for developing Internet-based applications.

Software as a Service ~ Software has generally been viewed as a product; most software still is
(SaaS) offered this way. If you want to run an application, you buy a software

package from a software vendor—often a CD, DVD or web download. You
then install that software on your computer and run it as needed. As new
versions of the software appear, you upgrade your software, often requiring
significant time and at considerable expense. This process can become cum-
bersome for organizations with tens of thousands of systems that must be
maintained on a diverse array of computer equipment. With Software as a
Service (SaaS), the software runs on servers elsewhere on the Internet.
When that server is updated, all clients worldwide see the new capabili-
ties—no local installation is needed. You access the service through a
browser. Browsers are quite portable, so you can run the same applications
on a wide variety of computers from anywhere in the world. Sales-
force.com, Google, and Microsoft’s Office Live and Windows Live all offer
SaaS. Saa$ is a capability of cloud computing.

Platform as a Ser- Platform as a Service (Paa$), another capability of cloud computing, pro-
vice (PaaS) vides a computing platform for developing and running applications as a
service over the web, rather than installing the tools on your computer.
Paa$ providers include Google App Engine, Amazon EC2, Bungee Labs

and more.
Software Develop- Software Development Kits (SDKs) include the tools and documentation
ment Kit (SDK) developers use to program applications.

Fig. 1.27 | Software technologies. (Part 2 of 2.)

Figure 1.28 describes software product-release categories.

Version Description

Alpha An alpha version is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new fea-
tures, getting early feedback, etc.

Fig. 1.28 | Software product-release terminology. (Part | of 2.)

.14 C++11 and the Open Source Boost Libraries 31

Version Description

Beta Bera versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release Release candidates are generally feature complete and (supposedly) bug free and

candidates ready for use by the community, which provides a diverse testing environ-
ment—the software is used on different systems, with varying constraints and
for a variety of purposes. Any bugs that appear are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous Software thats developed using this approach generally does not have version

beta numbers (for example, Google search or Gmail). The software, which is
hosted in the cloud (not installed on your computer), is constantly evolving
so that users always have the latest version.

Fig. 1.28 | Software product-release terminology. (Part 2 of 2.)

1.14 C++11 and the Open Source Boost Libraries

C++11 (formerly called C++0x)—the latest C++ programming language standard—was
published by ISO/IEC in 2011. Bjarne Stroustrup, the creator of C++, expressed his vision
for the future of the language—the main goals were to make C++ easier to learn, improve
library building capabilities and increase compatibility with the C programming language.
The new standard extends the C++ Standard Library and includes several features and en-
hancements to improve performance and security. The major C++ compiler vendors have
already implemented many of the new C++11 features (Fig. 1.29). Throughout the book,
we discuss various key features of C++11. For more information, visit the C++ Standards
Committee website at www.open-std.org/jtcl/sc22/wg21/ and isocpp.org. Copies of
the C++11 language specification (ISO/IEC 14882:2011) can be purchased at:

http://bit.1ly/CPlusPlusllStandard

C++ Compiler URL of C++1 1 feature descriptions

C++11 features implemented wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport
in each of the major C++
compilers.
Microsoft® Visual C++ msdn.microsoft.com/en-us/Tibrary/hh567368.aspx
GNU Compiler Collection gcc.gnu.org/projects/cxx0x. html
(g++)
Intel® C++ Compiler software.intel.com/en-us/articles/cOx-features-

supported-by-intel-c-compiler/

Fig. 1.29 | C++ compilers that have implemented major portions of C++11.

3

http://www.open-std.org/jtc1/sc22/wg21/
http://bit.ly/CPlusPlus11Standard

32 Chapter | Introduction to Computers and C++

C++ Compiler URL of C++1 1 feature descriptions

IBM® XL C/C++ www . ibm.com/developerworks/mydeveloperworks/
blogs/5894415f-be62-4bc0-81c5-3956e82276f3/
entry/x1c_compiler_s_c_11_support50?Tang=en

Clang clang.1llvm.org/cxx_status.html
EDG ecpp www . edg . com/docs/edg_cpp.pdf

Fig. 1.29 | C++ compilers that have implemented major portions of C++11.

Boost C++ Libraries
The Boost C++ Libraries are free, open-source libraries created by members of the C++
community. They are peer reviewed and portable across many compilers and platforms.
Boost has grown to over 100 libraries, with more being added regularly. Today there are
thousands of programmers in the Boost open source community. Boost provides C++ pro-
grammers with useful libraries that work well with the existing C++ Standard Library. The
Boost libraries can be used by C++ programmers working on a wide variety of platforms
with many different compilers. Some of the new C++11 Standard Library features were
derived from corresponding Boost libraries. We overview the libraries and provide code
examples for the “regular expression” and “smart pointer” libraries, among others.

Regular expressions are used to match specific character patterns in text. They can be
used to validate data to ensure that it’s in a particular format, to replace parts of one string
with another, or to split a string.

Many common bugs in C and C++ code are related to pointers, a powerful program-
ming capability that C++ absorbed from C. As you'll see, smart pointers help you avoid
errors associated with traditional pointers.

1.15 Keeping Up to Date with Information Technologies

Figure 1.30 lists key technical and business publications that will help you stay up to date
with the latest news and trends and technology. You can also find a growing list of
Internet- and web-related Resource Centers at www . deitel.com/resourcecenters.html.

ACM TechNews technews.acm.org/

ACM Transactions on www.gccis.rit.edu/taccess/index.html
Accessible Computing

ACM Transactions on Internet toit.acm.org/
Technology

Bloomberg Business Week www. businessweek . com

CNET news.cnet.com

Communications of the ACM cacm.acm.org/

Fig. 1.30 | Technical and business publications. (Part | of 2.)

www.deitel.com/resourcecenters.html
www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=en
www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=en
www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/xlc_compiler_s_c_11_support50?lang=en
www.edg.com/docs/edg_cpp.pdf
www.gccis.rit.edu/taccess/index.html
www.businessweek.com

1.16 Web Resources 33

Computerworld www . computerworld.com

Engadget www . engadget . com

eWeek www . eweek . com

Fast Company www . fastcompany . com/

Fortune money.cnn.com/magazines/fortune/
IEEE Computer www . computer.org/portal/web/computer
IEEE Internet Computing www . computer.org/portal/web/internet/home
InfoWorld www . infoworld.com

Mashable mashable.com

PCWorld www. pcworld. com

SD Times www .. sdtimes. com

Slashdot slashdot.org/

Smarter Technology www. smartertechnology.com
Technology Review technologyreview.com

Techcrunch techcrunch. com

Wired www . wired. com

Fig. 1.30 | Technical and business publications. (Part 2 of 2.)

1.16 Web Resources

This section provides links to our C++ and related Resource Centers that will be useful to
you as you learn C++. These include blogs, articles, whitepapers, compilers, development
tools, downloads, FAQs, tutorials, webcasts, wikis and links to C++ game programming
resources. For updates on Deitel publications, Resource Centers, training courses, partner
offers and more, follow us on Facebook® at www.facebook.com/deitelfan/, Twitter®
@deitel, Google+ at gplus.to/deitel and LinkedIn at bit.1y/DeitelLinkedIn.

Deitel & Associates Websites

www . deitel.com/books/cpphtp9/

The Deitel & Associates C++ How to Program, 9/e site. Here you'll find links to the book’s examples
and other resources.

www.deitel.com/cplusplus/

www.deitel.com/visualcplusplus/

www.deitel.com/codesearchengines/

www.deitel.com/programmingprojects/

Check these Resource Centers for compilers, code downloads, tutorials, documentation, books, e-
books, articles, blogs, RSS feeds and more that will help you develop C++ applications.
www.deitel.com

Check this site for updates, corrections and additional resources for all Deitel publications.
www.deitel.com/newsletter/subscribe.html

Subscribe here to the Deite/® Buzz Online e-mail newsletter to follow the Deitel & Associates pub-
lishing program, including updates and errata to C++ How to Program, 9le.

www.facebook.com/deitelfan/
www.deitel.com/books/cpphtp9/
www.deitel.com/codesearchengines/
www.deitel.com/programmingprojects/
www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.computerworld.com
www.engadget.com
www.eweek.com
www.fastcompany.com/
www.computer.org/portal/web/computer
www.computer.org/portal/web/internet/home
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.smartertechnology.com
www.wired.com
www.deitel.com/cplusplus/
www.deitel.com/visualcplusplus/

34 Chapter | Introduction to Computers and C++

Self-Review Exercises

1.1 Fill in the blanks in each of the following statements:
a) Computers process data under the control of sets of instructions called
b) The key logical units of the computer are the

and .
¢) The three types of languages discussed in the chapter are , and

d) The programs that translate high-level language programs into machine language are
called .

e) is an operating system for mobile devices based on the Linux kernel and Java.

f) software is generally feature complete and (supposedly) bug free and ready for
use by the community.

g) The Wii Remote, as well as many smartphones, uses a(n) which allows the de-
vice to respond to motion.

1.2 Fill in the blanks in each of the following sentences about the C++ environment.
a) C++ programs are normally typed into a computer using a(n) program.
b) In a C++ system, a(n) program executes before the compiler’s translation
phase begins.
c) The program combines the output of the compiler with various library func-
tions to produce an executable program.
d) The program transfers the executable program from disk to memory.

1.3 Fill in the blanks in each of the following statements (based on Section 1.8):

a) Objects have the property of —although objects may know how to commu-
nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

b) C++ programmers concentrate on creating , which contain data members and
the member functions that manipulate those data members and provide services to clients.

¢) The process of analyzing and designing a system from an object-oriented point of view
is called

d) With , new classes of objects are derived by absorbing characteristics of existing
classes, then adding unique characteristics of their own.

e) is a graphical language that allows people who design software systems to use
an industry-standard notation to represent them.

) Thesize, shape, color and weight of an object are considered of the object’s class.

Answers to Self-Review Exercises

1.1 a) programs. b) input unit, output unit, memory unit, central processing unit, arithmetic
and logic unit, secondary storage unit. ¢) machine languages, assembly languages, high-level lan-
guages. d) compilers. e) Android. f) Release candidate. g) accelerometer.

1.2 a) editor. b) preprocessor. c) linker. d) loader.

1.3 a) information hiding. b) classes. c) object-oriented analysis and design (OOAD).
d) inheritance.) The Unified Modeling Language (UML). f) attributes.

Exercises

1.4 Fill in the blanks in each of the following statements:
a) The logical unit of the computer that receives information from outside the computer
for use by the computer is the

Making a Difference 35

b) The process of instructing the computer to solve a problem is called

9] is a type of computer language that uses English-like abbreviations for ma-
chine-language instructions.

d) is a logical unit of the computer that sends information which has already
been processed by the computer to various devices so that it may be used outside the
computer.

e) and are logical units of the computer that retain information.

f) is a logical unit of the computer that performs calculations.

g) is a logical unit of the computer that makes logical decisions.

h) languages are most convenient to the programmer for writing programs
quickly and easily.

i) The only language a computer can directly understand is that computer’s

i) is a logical unit of the computer that coordinates the activities of all the other
logical units.

1.5 Fill in the blanks in each of the following statements:

a) initially became widely known as the development language of the Unix op-
erating system.

b) The programming language was developed by Bjarne Stroustrup in the eatly
1980s at Bell Laboratories.

1.6 Fill in the blanks in each of the following statements:
a) C++ programs normally go through six phases— , , ,
) and)
b) A(n) provides many tools that support the software development process,

such as editors for writing and editing programs, debuggers for locating logic errors in
programs, and many other features.

1.7 You're probably wearing on your wrist one of the world’s most common types of objects—
a watch. Discuss how each of the following terms and concepts applies to the notion of a watch:
object, attributes, behaviors, class, inheritance (consider, for example, an alarm clock), modeling,
messages, encapsulation, interface and information hiding.

Making a Difference

Throughout the book we've included Making a Difference exercises in which you'll be asked to
work on problems that really matter to individuals, communities, countries and the world. For
more information about worldwide organizations working to make a difference, and for related
programming project ideas, visit our Making a Difference Resource Center at www.deitel.com/
makingadifference.

1.8 (Tést Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Various organi-
zations and individuals are increasingly concerned about their “carbon footprints.” Websites such
as TerraPass

www. terrapass.com/carbon-footprint-calculator/
and Carbon Footprint
www. carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon footprint calculator. To
prepare for this, research the formulas for calculating carbon footprints.

www.deitel.com/makingadifference
www.deitel.com/makingadifference
www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx

36 Chapter | Introduction to Computers and C++

1.9 (Tést Drive: Body Mass Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at wew. nh1bisupport.com/bmi/. Use it to calculate
your own BMI. An exercise in Chapter 2 will ask you to program your own BMI calculator. To pre-
pare for this, research the formulas for calculating BMI.

1.10 (Asmtributes of Hybrid Vehicles) In this chapter you learned the basics of classes. Now you’ll
begin “fleshing out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming in-
creasingly popular, because they often get much better mileage than purely gasoline-powered vehi-
cles. Browse the web and study the features of four or five of today’s popular hybrid cars, then list
as many of their hybrid-related attributes as you can. For example, common attributes include city-
miles-per-gallon and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight,
etc.).

1.1l (Gender Neutrality) Some people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you've been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” by “spouse,” “man” by “person,”
“daughter” by “child” and so on), explain the procedure you’d use to read through a paragraph of
text and manually perform these replacements. How might your procedure generate a strange term
like “woperchild,” which is actually listed in the Urban Dictionary (www.urbandictionary.com)? In
Chapter 4, you'll learn that a more formal term for “procedure” is “algorithm,” and that an algo-
rithm specifies the steps to be performed and the order in which to perform them.

1.12 (Privacy) Some online email services save all email correspondence for some period of time.
Suppose a disgruntled employee of one of these online email services were to post all of the email
correspondences for millions of people, including yours, on the Internet. Discuss the issues.

1.13 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your
programs were to cause a cancer patient to receive an excessive dose during radiation therapy and
that the person is either severely injured or dies. Discuss the issues.

1.14 (2010 “Flash Crash”) An example of the consequences of our dependency on computers
was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock market fell pre-
cipitously in a matter of minutes, wiping out trillions of dollars of investments, and then recovered
within minutes. Use the Internet to investigate the causes of this crash and discuss the issues it raises.

Making a Difference Resources

The Microsoft Image Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hunger,
emergency response, literacy, combating HIV/AIDS and more. For more information about the
competition and to learn about previous winners’ projects, visit waw.imaginecup.com/about. You
can also find several project ideas submitted by worldwide charitable organizations.

For additional ideas for programming projects that can make a difference, search the web for
“making a difference” and visit the following websites:

www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major worldwide issues such as environ-
mental sustainability, gender equality, child and maternal health, universal education and more.

www.nhlbisupport.com/bmi/
www.urbandictionary.com
www.imaginecup.com/about
www.un.org/millenniumgoals

Making a Difference Resources 37

www . ibm.com/smarterplanet/

The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related to
business, cloud computing, education, sustainability and more.

www . gatesfoundation.org/Pages/home.aspx

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate hun-
ger, poverty and disease in developing countries. In the U.S., the foundation focusses on improving
public education, particularly for people with few resources.

www . nethope.org/

NetHope is a collaboration of humanitarian organizations worldwide working to solve technology
problems such as connectivity, emergency response and more.

www. rainforestfoundation.org/home

The Rainforest Foundation works to preserve rainforests and to protect the rights of the indigenous
people who call the rainforests home. The site includes a list of things you can do to help.
www.undp.org/

The United Nations Development Programme (UNDP) secks solutions to global challenges such
as crisis prevention and recovery, energy and the environment, democratic governance and more.
www.unido.org

The United Nations Industrial Development Organization (UNIDO) secks to reduce poverty, give
developing countries the opportunity to participate in global trade, and promote energy efficiency
and sustainability.

www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict prevention, humanitarian
aid and more.

www . toyota.com/ideas-for-good/

Toyota’s Ideas for Good website describes several Toyota technologies that are making a difference—
including their Advanced Parking Guidance System, Hybrid Synergy Drive®, Solar Powered Venti-
lation System, T.H.U.M.S. (Total Human Model for Safety) and Touch Tracer Display. You can par-
ticipate in the Ideas for Good challenge by submitting a short essay or video describing how these
technologies can be used for other good purposes.

www.ibm.com/smarterplanet/
www.gatesfoundation.org/Pages/home.aspx
www.nethope.org/
www.rainforestfoundation.org/home
www.undp.org/
www.unido.org
www.usaid.gov/
www.toyota.com/ideas-for-good/

Introduction to C++
Programming, Input/Output
and Operators

Whats in a name? that
which we call a rose

By any other name
would smell as sweet.
—William Shakespeare

High thoughts must have high
language.
—Aristophanes

One person can make a
difference and every person
should rry.

—TJohn F. Kennedy

Objectives
In this chapter you'll learn:

m To write simple computer
programs in C++.

m To write simple input and
output statements.

m To use fundamental types.

m Basic computer memory
concepts.

m To use arithmetic operators.

m The precedence of arithmetic
operators.

= To write simple decision-
making statements.

2.1 Introduction 39

2.1 Introduction 2.5 Memory Concepts
2.2 First Program in C++: Printing a Line of 2.6 Arithmetic

Text 2.7 Decision Making: Equality and
2.3 Modifying Our First C++ Program Relational Operators

2.4 Another C++ Program: Adding Integers 2.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

2.1 Introduction

We now introduce C++ programming, which facilitates a disciplined approach to program
development. Most of the C++ programs you'll study in this book process data and display
results. In this chapter, we present five examples that demonstrate how your programs can
display messages and obtain data from the user for processing. The first three examples
simply display messages on the screen. The next obtains two numbers from a user, calcu-
lates their sum and displays the result. The accompanying discussion shows you how to
perform arithmetic calculations and save their results for later use. The fifth example dem-
onstrates decision-making by showing you how to compare two numbers, then display mes-
sages based on the comparison results. We analyze each program one line at a time to help
you ease your way into C++ programming,.

Compiling and Running Programs
Atwww.deitel.com/books/cpphtp9, we've posted videos that demonstrate compiling and
running programs in Microsoft Visual C++, GNU C++ and Xcode.

2.2 First Program in C++: Printing a Line of Text

Consider a simple program that prints a line of text (Fig. 2.1). This program illustrates sev-
eral important features of the C++ language. The text in lines 1-11 is the program’s source
code (or code). The line numbers are not part of the source code.

1 // Fig. 2.1: fig02_01.cpp

2 // Text-printing program.

3 #include <iostream> // allows program to output data to the screen
4

5 // function main begins program execution

6 1int mainQ

7 {

8 std::cout << ; // display message
9

0 return 0; // indicate that program ended successfully
1

} // end function main

Welcome to C++!

Fig. 2.1 | Text-printing program.

40 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Comments
Lines 1 and 2

// Fig. 2.1: fig02_01.cpp
// Text-printing program.

each begin with //, indicating that the remainder of each line is a comment. You insert
comments to document your programs and to help other people read and understand
them. Comments do not cause the computer to perform any action when the program is
run—they’re ignored by the C++ compiler and do 7oz cause any machine-language object
code to be generated. The comment Text-printing program describes the purpose of the
program. A comment beginning with // is called a single-line comment because it termi-
nates at the end of the current line. [Noze: You also may use comments containing one or
more lines enclosed in /* and */.]

w72 Good Programming Practice 2.1
?' Every program should begin with a comment that describes the purpose of the program.
=2

#include Preprocessing Directive
Line 3

#include <iostream> // allows program to output data to the screen

is a preprocessing directive, which is a message to the C++ preprocessor (introduced in
Section 1.9). Lines that begin with # are processed by the preprocessor before the program
is compiled. This line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream>. This header is a file containing information
used by the compiler when compiling any program that outputs data to the screen or in-
puts data from the keyboard using C++’s stream input/output. The program in Fig. 2.1
outputs data to the screen, as we'll soon see. We discuss headers in more detail in
Chapter 6 and explain the contents of <iostream> in Chapter 13.

- Forgetting to include the <iostream> header in a program that inputs data from the key-
; board or outputs data to the screen causes the compiler to issue an error message.

-"_;;I ! Common Programming Error 2.1

.

Blank Lines and White Space

Line 4 is simply a blank line. You use blank lines, space characters and rab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 5

// function main begins program execution

is another single-line comment indicating that program execution begins at the next line.
Line 6

int mainQ)

2.2 First Program in C++: Printing a Line of Text 41

is a part of every C++ program. The parentheses after main indicate that main is a program
building block called a function. C++ programs typically consist of one or more functions
and classes (as you'll learn in Chapter 3). Exactly one function in every program must be
named main. Figure 2.1 contains only one function. C++ programs begin executing at
function main, even if main is 7oz the first function defined in the program. The keyword
int to the left of main indicates that main “returns” an integer (whole number) value. A
keyword is a word in code that is reserved by C++ for a specific use. The complete list of
C++ keywords can be found in Fig. 4.3. We'll explain what it means for a function to “re-
turn a value” when we demonstrate how to create your own functions in Section 3.3. For
now, simply include the keyword int to the left of main in each of your programs.

The left brace, {, (line 7) must begin the body of every function. A corresponding
right brace, }, (line 11) must end each function’s body.

An Output Statement
Line 8

std::cout << ; // display message

instructs the computer to perform an action—namely, to print the characters contained
between the double quotation marks. Together, the quotation marks and the characters
between them are called a string, a character string or a string literal. In this book, we
refer to characters between double quotation marks simply as strings. White-space charac-
ters in strings are not ignored by the compiler.

The entire line 8, including std::cout, the << operator, the string "Welcome to
C++!\n" and the semicolon (;), is called a statement. Most C++ statements end with a
semicolon, also known as the statement terminator (we’ll see some exceptions to this soon).
Preprocessing directives (like #incTude) do not end with a semicolon. Typically, output
and input in C++ are accomplished with streams of characters. Thus, when the preceding
statement is executed, it sends the stream of characters Welcome to C++!\n to the standard
output stream object—std: : cout—which is normally “connected” to the screen.

2 Common Programming Error 2.2
'“'f Omitting the semicolon at the end of a C++ statement is a syntax error. The syntax of a
= programming language specifies the rules for creating proper programs in that language.
A syntax error occurs when the compiler encounters code that violates C++'s language
rules (i.e., its syntax). The compiler normally issues an error message to help you locate and
[fix the incorrect code. Syntax errors are also called compiler errors, compile-time errors
or compilation errors, because the compiler detects them during the compilation phase.
You cannot execute your program until you correct all the syntax errors in it. As you'll see,
some compilation errors are not syntax errors.

S

%75 Good Programming Practice 2.2

Indent the body of each function one level within the braces that delimit the function’s body.
This makes a program’s functional structure stand out and makes the program easier to read.

A

w75 Good Programming Practice 2.3
. l} Set a convention for the size of indent you prefer, then apply it uniformly. The tab key may
' be used to create indents, but tab stops may vary. We prefer three spaces per level of indent.

42 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

The std Namespace

The std:: before cout is required when we use names that we’ve brought into the pro-
gram by the preprocessing directive #include <iostream>. The notation std: : cout spec-
ifies that we are using a name, in this case cout, that belongs to namespace std. The names
cin (the standard input stream) and cerr (the standard error stream)—introduced in
Chapter 1—also belong to namespace std. Namespaces are an advanced C++ feature that
we discuss in depth in Chapter 23, Other Topics. For now, you should simply remember
to include std:: before each mention of cout, cin and cerr in a program. This can be
cumbersome—the next example introduces using declarations and the using directive,
which will enable you to omit std: : before each use of a name in the std namespace.

The Stream Insertion Operator and Escape Sequences

In the context of an output statement, the << operator is referred to as the stream insertion
operator. When this program executes, the value to the operator’s right, the right operand,
is inserted in the output stream. Notice that the operator points in the direction of where
the data goes. A string literal’s characters normally print exactly as they appear between the
double quotes. However, the characters \n are nor printed on the screen (Fig. 2.1). The
backslash (\) is called an escape character. It indicates that a “special” character is to be
output. When a backslash is encountered in a string of characters, the next character is
combined with the backslash to form an escape sequence. The escape sequence \n means
newline. It causes the cursor (i.e., the current screen-position indicator) to move to the
beginning of the next line on the screen. Some common escape sequences are listed in

Fig. 2.2.

Escape

sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the
current line; do not advance to the next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\' Single quote. Used to print a single quote character.

\" Double quote. Used to print a double quote character.

Fig. 2.2 | Escape sequences.

The return Statement
Line 10

return 0; // indicate that program ended successfully

is one of several means we’ll use to exit a function. When the return statement is used at
the end of main, as shown here, the value 0 indicates that the program has terminared suc-
cessfully. The right brace, }, (line 11) indicates the end of function main. According to the

2.3 Modifying Our First C++ Program 43

C++ standard, if program execution reaches the end of main without encountering a re-
turn statement, it’s assumed that the program terminated successfully—exactly as when
the last statement in main is a return statement with the value 0. For that reason, we omit
the return statement at the end of main in subsequent programs.

A Note About Comments

As you write a new program or modify an existing one, you should keep your comments up-
to-date with the program’s code. You'll offen need to make changes to existing programs—
for example, to fix errors (commonly called bugs) that prevent a program from working
correctly or to enhance a program. Updating your comments as you make code changes
helps ensure that the comments accurately reflect what the code does. This will make your
programs easier to understand and modify in the future.

2.3 Modifying Our First C++ Program

We now present two examples that modify the program of Fig. 2.1 to print text on one
line by using multiple statements and to print text on several lines by using a single state-
ment.

Printing a Single Line of Text with Multiple Statements

Welcome to C++! can be printed several ways. For example, Fig. 2.3 performs stream inser-
tion in multiple statements (lines 8-9), yet produces the same output as the program of
Fig. 2.1. [Note: From this point forward, we use a light blue background to highlight the
key features each program introduces.] Each stream insertion resumes printing where the
previous one stopped. The first stream insertion (line 8) prints Welcome followed by a
space, and because this string did not end with \n, the second stream insertion (line 9) be-
gins printing on the same line immediately following the space.

// Fig. 2.3: fig02_03.cpp
// Printing a Tine of text with multiple statements.
#include <iostream> // allows program to output data to the screen

// function main begins program execution
int mainQ)
{
std::cout << 2
std::cout << ;
} // end function main

CVWOoO~NONUNDLWN=

Welcome to C++!

Fig. 2.3 | Printing a line of text with multiple statements.

Printing Multiple Lines of Text with a Single Statement

A single statement can print multiple lines by using newline characters, as in line 8 of
Fig. 2.4. Each time the \n (newline) escape sequence is encountered in the output stream,
the screen cursor is positioned to the beginning of the nextline. To get a blank line in your
output, place two newline characters back to back, as in line 8.

44 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

1 // Fig. 2.4: fig02_04.cpp

2 // Printing multiple Tines of text with a single statement.
3 #include <iostream> // allows program to output data to the screen
4

5 // function main begins program execution

6 1int main()

7 {

8 std::cout << "Welcome\nto\n\nC++!\n";

9 1} // end function main

Welcome

to

C++!

Fig. 2.4 | Printing multiple lines of text with a single statement.

2.4 Another C++ Program: Adding Integers

Our next program obtains two integers typed by a user at the keyboard, computes the sum
of these values and outputs the result using std: : cout. Figure 2.5 shows the program and
sample inputs and outputs. In the sample execution, we highlight the user’s input in bold.
The program begins execution with function main (line 6). The left brace (line 7) begins
main’s body and the corresponding right brace (line 22) ends it.

1 // Fig. 2.5: fig02_05.cpp

2 // Addition program that displays the sum of two integers.

3 #include <iostream> // allows program to perform input and output

4

5 // function main begins program execution

6 1int main(Q)

7 {

8 // variable declarations

9 int numberl = 0; // first integer to add (initialized to 0)

10 int number2 = 0; // second integer to add (initialized to 0)

11 int sum = 0; // sum of numberl and number2 (initialized to 0)

12

13 std::cout << "Enter first integer: "; // prompt user for data

14 std::cin >> numberl; // read first integer from user into numberl
15

16 std::cout << "Enter second integer: "; // prompt user for data

17 std::cin >> number2; // read second integer from user into number?2
18

19 sum = numberl + number2; // add the numbers; store result in sum
20
21 std::cout << "Sum is " << sum << std::endl; // display sum; end Tine

22 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.5 | Addition program that displays the sum of two integers.

2.4 Another C++ Program: Adding Integers 45

Variable Declarations

Lines 9-11
int numberl = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of numberl and number2 (initialized to 0)

are declarations. The identifiers numberl, number2 and sum are the names of variables. A
variable is a location in the computer’s memory where a value can be stored for use by a
program. These declarations specify that the variables number1, number2 and sum are data
of type int, meaning that these variables will hold integer values, i.e., whole numbers such
as 7, —11, 0 and 31914. The declarations also initialize each of these variables to 0.

<= Error-Prevention Tip 2.1

%) Although it’s not always necessary to initialize every variable explicitly, doing so will help
you avoid many kinds of problems.

[~

All variables must be declared with a name and a data type before they can be used in a
program. Several variables of the same type may be declared in one declaration or in mul-
tiple declarations. We could have declared all three variables in one declaration by using a
comma-separated list as follows:

int numberl = 0, number2 = 0, sum = 0;

This makes the program less readable and prevents us from providing comments that de-
scribe each variable’s purpose.

w75 Good Programming Practice 2.4
Declare only one variable in each declaration and provide a comment that explains the

U variable’s purpose in the program.

Fundamental Types

We'll soon discuss the type double for specifying real numbers, and the type char for spec-
ifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and
—11.19. A char variable may hold only a single lowercase letter, a single uppercase letter,
a single digit or a single special character (e.g., $ or *). Types such as int, double and char
are called fundamental types. Fundamental-type names consist of one or more keywords
and therefore must appear in all lowercase letters. Appendix C contains the complete list
of fundamental types.

Identifiers

A variable name (such as number1) is any valid identifier that is 7o a keyword. An identi-
fier is a series of characters consisting of letters, digits and underscores (_) that does 7ot
begin with a digit. C++ is case sensitive—uppercase and lowercase letters are different, so
al and Al are different identifiers.

- Portability Tip 2.1
& C++ allows identifiers of any length, but your C++ implementation may restrict identifier
U2 lengths. Use identifiers of 31 characters or fewer to ensure portability.

46 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Choosing meaningful identifiers makes a program self-documenting—a person can un-
derstand the program simply by reading it rather than having to refer to program com-
ments or documentation.

}. Good Programming Practice 2.5

" Avoid using abbreviations in identifiers. This improves program readability.

:'?.. Good Programming Practice 2.6

Do not use identifiers that begin with underscores and double underscores, because C++
compilers may use names like that for their own purposes internally. This will prevent the
names you choose from being confused with names the compilers choose.

:'?.. Good Programming Practice 2.7

Placement of Variable Declarations

Declarations of variables can be placed almost anywhere in a program, but they must ap-
pear before their corresponding variables are used in the program. For example, in the pro-
gram of Fig. 2.5, the declaration in line 9

int numberl = 0; // first integer to add (initialized to 0)
could have been placed immediately before line 14

std::cin >> numberl; // read first integer from user into numberl
the declaration in line 10

int number2 = 0; // second integer to add (initialized to 0)
could have been placed immediately before line 17

std::cin >> number2; // read second integer from user into number?2
and the declaration in line 11

int sum = 0; // sum of numberl and number2 (initialized to 0)
could have been placed immediately before line 19

sum = numberl + number2; // add the numbers; store result in sum

Obtaining the First Value from the User
Line 13

std::cout << ; // prompt user for data

displays Enter first integer: followed by a space. This message is called a prompt be-
cause it directs the user to take a specific action. We like to pronounce the preceding state-
ment as “std: : cout gess the string "Enter first integer: ".” Line 14

std::cin >> numberl; // read first integer from user into numberl

uses the standard input stream object cin (of namespace std) and the stream extraction
operator, >>, to obtain a value from the keyboard. Using the stream extraction operator
with std: :cin takes character input from the standard input stream, which is usually the

2.4 Another C++ Program: Adding Integers 47

keyboard. We like to pronounce the preceding statement as, “std: :cin gives a value to
numberl” or simply “std::cin gives numberl.”

When the computer executes the preceding statement, it waits for the user to enter a
value for variable numberl. The user responds by typing an integer (as characters), then
pressing the Enter key (sometimes called the Return key) to send the characters to the com-
puter. The computer converts the character representation of the number to an integer
and assigns (i.e., copies) this number (or value) to the variable numberl. Any subsequent
references to number1l in this program will use this same value.

The std::cout and std::cin stream objects facilitate interaction between the user
and the computer.

Users can, of course, enter invalid data from the keyboard. For example, when your
program is expecting the user to enter an integer, the user could enter alphabetic charac-
ters, special symbols (like # or @) or a number with a decimal point (like 73.5), among
others. In these early programs, we assume that the user enters valid data. As you progress
through the book, you’ll learn various techniques for dealing with the broad range of pos-
sible data-entry problems.

Obtaining the Second Value from the User
Line 16

std::cout << ; // prompt user for data
prints Enter second integer: on the screen, prompting the user to take action. Line 17
std::cin >> number2; // read second integer from user into number?2

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User

The assignment statement in line 19
sum = numberl + number2; // add the numbers; store result in sum

adds the values of variables number1 and number2 and assigns the result to variable sum using
the assignment operator =. We like to read this statement as, “sum gezs the value of numberl
+ number2.” Most calculations are performed in assignment statements. The = operator and
the + operator are called binary operators because each has zwo operands. In the case of the
+ operator, the two operands are humberl and number2. In the case of the preceding = oper-
ator, the two operands are sum and the value of the expression numberl + number2.

%73 Good Programming Practice 2.8
Place spaces on either side of a binary operator. This makes the operator stand out and

SIS nakes the program more readable.
Displaying the Result
Line 21
std::cout << << sum << std::endl; // display sum; end line

displays the character string Sum is followed by the numerical value of variable sum fol-
lowed by std: :end1—a so-called stream manipulator. The name end1 is an abbreviation

48 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

for “end line” and belongs to namespace std. The std: :end1 stream manipulator outputs
a newline, then “flushes the output buffer.” This simply means that, on some systems
where outputs accumulate in the machine until there are enough to “make it worthwhile”
to display them on the screen, std: :end1 forces any accumulated outputs to be displayed
at that moment. This can be important when the outputs are prompting the user for an
action, such as entering data.

The preceding statement outputs multiple values of different types. The stream inser-
tion operator “knows” how to output each type of data. Using multiple stream insertion
operators (<<) in a single statement is referred to as concatenating, chaining or cascading
stream insertion operations.

Calculations can also be performed in output statements. We could have combined
the statements in lines 19 and 21 into the statement

std::cout << << numberl + number2 << std::endl;

thus eliminating the need for the variable sum.

A powerful feature of C++ is that you can create your own data types called classes (we
introduce this capability in Chapter 3 and explore it in depth in Chapter 9). You can then
“teach” C++ how to input and output values of these new data types using the >> and <<
operators (this is called operator overloading—a topic we explore in Chapter 10).

2.5 Memory Concepts

Variable names such as numberl, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size and a value.
In the addition program of Fig. 2.5, when the statement in line 14

std::cin >> numberl; // read first integer from user into numberl

is executed, the integer typed by the user is placed into a memory location to which the
name numberl has been assigned by the compiler. Suppose the user enters 45 for number1.
The computer will place 45 into the location numberi, as shown in Fig. 2.6. When a value
is placed in a memory location, the value overwrites the previous value in that location;
thus, placing a new value into a memory location is said to be a destructive operation.

numberl 45

Fig. 2.6 | Memory location showing the name and value of variable number1.

Returning to our addition program, suppose the user enters 72 when the statement
std::cin >> number2; // read second integer from user into number?2

is executed. This value is placed into the location number2, and memory appears as in
Fig. 2.7. The variables’ locations are not necessarily adjacent in memory.

Once the program has obtained values for numberl and number2, it adds these values
and places the total into the variable sum. The statement

sum = numberl + number2; // add the numbers; store result in sum

2.6 Arithmetic 49

numberl

45
A

number?2 72
A

Fig. 2.7 | Memory locations after storing values in the variables for number1 and number2.

replaces whatever value was stored in sum. The calculated sum of numberl and number2 is
placed into variable sum without regard to what value may already be in sum—that value
is losz). After sum is calculated, memory appears as in Fig. 2.8. The values of numberl and
number2 appear exactly as they did before the calculation. These values were used, but 7oz
destroyed, as the computer performed the calculation. Thus, when a value is read oz of a
memory location, the operation is nondestructive.

numberl 45
A

number?2 72
A

sum 117
R

Fig. 2.8 | Memory locations after calculating and storing the sum of number1 and number?2.

2.6 Arithmetic

Most programs perform arithmetic calculations. Figure 2.9 summarizes the C++ arithme-
tic operators. Note the use of various special symbols not used in algebra. The asterisk (*)
indicates multiplication and the percent sign (%) is the modulus operator that will be dis-
cussed shortly. The arithmetic operators in Fig. 2.9 are all binary operators, i.c., operators
that take two operands. For example, the expression numberl + number2 contains the bi-
nary operator + and the two operands numberl and number2.

Integer division (i.e., where both the numerator and the denominator are integers)
yields an integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expres-

C++ arithmetic Algebraic C++
C++ operation operator expression expression
Addition + f+7 f+7
Subtraction - p—c p-c
Multiplication & bmorb - m b *m
Division / x/yoriorx+y xX/y
Modulus % 7 mod s r%s

Fig. 2.9 | Arithmetic operators.

50 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

sion 17 / 5 evaluates to 3. Any fractional part in integer division is truncated (i.e., dis-
carded)—no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder afier integer division.
The modulus operator can be used on/y with integer operands. The expression x % y yields
the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later chap-
ters, we discuss many interesting applications of the modulus operator, such as
determining whether one number is a multiple of another (a special case of this is deter-
mining whether a number is 0odd or even).

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C++ must be entered into the computer in straight-line form.
Thus, expressions such as “a divided by b” must be written as a / b, so that all constants,

variables and operators appear in a straight line. The algebraic notation
a

b
is generally 7o acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathemartical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + ¢ we writea * (b + ¢).

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

Ca*(Cb+c))
the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an ex-
pression contains several multiplication, division and modulus operations, oper-
ators are applied from /eft ro right. Multiplication, division and modulus are said
to be on the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains
several addition and subtraction operations, operators are applied from /left ro
right. Addition and subtraction also have the same level of precedence.

The rules of operator precedence define the order in which C++ applies operators.
When we say that certain operators are applied from left to right, we are referring to the
associativity of the operators. For example, the addition operators (+) in the expression

a+b+c

associate from left to right, so a + b is calculated first, then c is added to that sum to deter-
mine the whole expression’s value. We'll see that some operators associate from right to left.
Figure 2.10 summarizes these rules of operator precedence. We expand this table as we in-
troduce additional C++ operators. Appendix A contains the complete precedence chart.

2.6 Arithmetic 51

Operator(s) Operation(s) Order of evaluation (precedence)

) Parentheses Evaluated first. If the parentheses are nested, such
as in the expressiona * (b+c/ d+e)), the
expression in the innermost pair is evaluated first.
[Caution: If you have an expression such as (a +
b) * (c - d) in which two sets of parentheses are
not nested, but appear “on the same level,” the
C++ Standard does 7ot specify the order in which
these parenthesized subexpressions will be evalu-

ated.]
Multiplication ~ Evaluated second. If there are several, they’re
/ Division evaluated left to right.
% Modulus
+ Addition Evaluated last. If there are several, they're evalu-
- Subtraction ated left to right.

Fig. 2.10 | Precedence of arithmetic operators.

Sample Algebraic and C++ Expressions

Now consider several expressions in light of the rules of operator precedence. Each exam-
ple lists an algebraic expression and its C++ equivalent. The following is an example of an
arithmetic mean (average) of five terms:

Algebra: oo Gxbrcrdre

5
CH+: m=Ca+b+c+d+e)/5;

The parentheses are required because division has Aigher precedence than addition. The
entire quantity (a+b +c+d+e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + ¢ + d + e / 5, which evaluates incorrectly as

e
a+brcrd+ =

5
The following is an example of the equation of a straight line:
Algebra: y = mx+b
C++: y =m?%¥Xx + b;

No parentheses are required. The multiplication is applied first because multiplication has
a higher precedence than addition.

The following example contains modulus (%), multiplication, division, addition, sub-
traction and assighment operations:

Algebra: z=pr%q + wix—y
C++: z = p *r % qg+w / x -y;

6 1 2 4 3 5

52 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

The circled numbers under the statement indicate the order in which C++ applies the op-
erators. The multiplication, modulus and division are evaluated firsz in left-to-right order
(i.e., they associate from left to right) because they have higher precedence than addition and
subtraction. The addition and subtraction are applied next. These are also applied left to
right. The assignment operator is applied /ast because its precedence is lower than that of
any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of a second-degree polynomial y = ax? + bx + ¢:

= % s

y = a * X * X + b * x + c;

6 1 2 4 3 5

The circled numbers under the statement indicate the order in which C++ applies the op-
erators. There is no arithmetic operator for exponentiation in C++, so we've represented x 2
as x * x. In Chapter 5, we’'ll discuss the standard library function pow (“power”) that per-
forms exponentiation.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a=2, b =3, c =7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied and the final value of the expression.

Step . y=2%*5%54+3%*5+7; (Leftmost multiplication)
2 *54s 10
Step 2. y =10 * 5+ 3 * 5 + 7; (Leftmost multiplication)
10 * 5 is 50
Step 3. y=50+3%*54+7; (Multiplication before addition)
3 *% 5 1ds 15
Step 4. y =50 + 15 + 7; (Leftmost addition)
50 + 15 is 65
Step 5. y =65+ 7; (Last addition)
65 + 7 is 72
Step 6. y =72 (Last operation—place 72 in'y)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

2.7 Decision Making: Equality and Relational Operators 53

Redundant Parentheses

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the
expression clearer. These are called redundant parentheses. For example, the preceding as-
signment statement could be parenthesized as follows:

y=Ca*x*x)+(b*x) +c;

2.7 Decision Making: Equality and Relational Operators

We now introduce a simple version of C++’s if statement that allows a program to take
alternative action based on whether a condition is true or false. If the condition is zrue, the
statement in the body of the if statement is executed. If the condition is false, the body
statement 75 nor executed. We'll see an example shortly.

Conditions in if statements can be formed by using the relational operators and
equality operators summarized in Fig. 2.12. The relational operators all have the same level
of precedence and associate left to right. The equality operators both have the same level of
precedence, which is Jower than that of the relational operators, and associate left to right.

Algebraic relational C++ relational or Sample C++

or equality operator equality operator condition Meaning of C++ condition
Relational operators

> X >y X is greater than y

< X <Yy X is less than y

> >= X >=y X is greater than or equal to y
< <= X <=y X is less than or equal to y
Equality operators

= == X ==y X is equal to y

= X l=y X is not equal to y

Fig. 2.12 | Relational and equality operators.

35 Common Programming Error 2.3

.”? Reversing the order of the pair of symbols in the operators =, >= and <= (by writing them as

BB L1 o and =< respectively) is normally a syntax error. In some cases, writing 1= as =1 will
not be a syntax error, but almost certainly will be a logic error that has an effect at execution
time. You'll understand why when you learn about logical operators in Chapter 5. A fatal
logic error causes a program to fail and terminate prematurely. A nonfatal logic error al-
lows a program to continue executing, but usually produces incorrect results.

7 Common Programming Error 2.4

. Confusing the equality operator == with the assignment operator = results in logic errors.
We like to read the equality operator as “is equal to” or “double equals,” and the assign-
ment operator as ‘gets” or “gets the value of” or “is assigned the value of.” As you'll see in
Section 5.9, confusing these operators may not necessarily cause an easy-to-recognize syn-
tax error, but may cause subtle logic errors.

54 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Using the if Statement

The following example (Fig. 2.13) uses six if statements to compare two numbers input
by the user. If the condition in any of these 1 f statements is satisfied, the output statement
associated with that i f statement is executed.

// Fig. 2.13: fig02_13.cpp

// Comparing integers using if statements, relational operators
// and equality operators.

#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

VoO~NONUND WN=

10 // function main begins program execution
Il int mainQ)

12 {

13 int numberl = 0; // first integer to compare (initialized to 0)
14 int number2 = 0; // second integer to compare (initialized to 0)
15

16 cout << "Enter two integers to compare: "; // prompt user for data
17 cin >> numberl >> number2; // read two integers from user

18

19 if (numberl == number2)

20 cout << numberl << " == " << number2 << endl;

21

22 if (numberl != number2)

23 cout << numberl << " != " << number2 << endl;

24

25 if (numberl < number2)

26 cout << numberl << " < " << number2 << endl;

27

28 if (numberl > number2)

29 cout << numberl << " > " << number2 << endl;

30

31 if (numberl <= number2)

32 cout << numberl << " <= " << number2 << endl;

33

34 if (numberl >= number2)

35 cout << numberl << " >= " << number2 << endl;

36 } // end function main

Enter two integers to compare: 3 7

3 I=7
3 <7
3 <=7

Enter two integers to compare: 22 12

22 1= 12
22 > 12
22 >= 12

Fig. 2.13 | Comparing integers using if statements, relational operators and equality operators.
(Part | of 2.)

2.7 Decision Making: Equality and Relational Operators 55

Enter two integers to compare: 7 7

7 =17
7 <=7
7 >=17

Fig. 2.13 | Comparing integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

using Declarations
Lines 6-8

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl
are using declarations that eliminate the need to repeat the std: : prefix as we did in ear-
lier programs. We can now write cout instead of std: : cout, cin instead of std: :cin and
end1 instead of std: :end1, respectively, in the remainder of the program.
In place of lines 6-8, many programmers prefer to provide the using directive

using namespace std;

which enables a program to use #// the names in any standard C++ header (such as
<iostream>) that a program might include. From this point forward in the book, we’ll use
the preceding directive in our programs.!

Variable Declarations and Reading the Inputs from the User
Lines 13—14

int numberl
int number?2

; // first integer to compare (initialized to 0)
; // second integer to compare (initialized to 0)

declare the variables used in the program and initializes them to 0.

The program uses cascaded stream extraction operations (line 17) to input two inte-
gers. Remember that we're allowed to write cin (instead of std: :cin) because of line 7.
First a value is read into variable number1, then a value is read into variable number?2.

Comparing Numbers
The 1 f statement in lines 19-20

if (numberl == number2)
cout << numberl << << number2 << endl;

compares the values of variables numberl and number2 to test for equality. If the values are
equal, the statement in line 20 displays a line of text indicating that the numbers are equal.
If the conditions are true in one or more of the i f statements starting in lines 22, 25, 28,
31 and 34, the corresponding body statement displays an appropriate line of text.

Each i f statement in Fig. 2.13 has a single statement in its body and each body state-
ment is indented. In Chapter 4 we show how to specify if statements with multiple-state-
ment bodies (by enclosing the body statements in a pair of braces, { 3, creating what’s
called a compound statement or a block).

1. In Chapter 23, Other Topics, we'll discuss some issues with using directives in large-scale systems.

56 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Indent the statement(s) in the body of an if statement to enhance readability.

-y,, Good Programming Practice 2.9
£ - _cu 8

' Placing a semicolon immediately after the right parenthesis after the condition in an if
statement is often a logic error (although not a syntax error). The semicolon causes the body

of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the i f state-

ment now becomes a statement in sequence with the if statement and always executes,

often causing the program to produce incorrect results.

:‘_':i .-f Common Programming Error 2.5

=3

White Space

Note the use of white space in Fig. 2.13. Recall that white-space characters, such as tabs,
newlines and spaces, are normally ignored by the compiler. So, statements may be split
over several lines and may be spaced according to your preferences. It’s a syntax error to
split identifiers, strings (such as "hello") and constants (such as the number 1000) over
several lines.

w73 Good Programming Practice 2.10

? A lengthy statement may be spread over several lines. If a single statement must be split
' across lines, choose meaningful breaking points, such as after a comma in a comma-sepa-

rated list, or after an operator in a lengthy expression. If a statement is split across two or

more lines, indent all subsequent lines and lefi-align the group of indented lines.

Operator Precedence

Figure 2.14 shows the precedence and associativity of the operators introduced in this
chapter. The operators are shown top to bottom in decreasing order of precedence. All
these operators, with the exception of the assignment operator =, associate from left to
right. Addition is left-associative, so an expression like x + y + z is evaluated as if it had
been written (x +y) + z. The assignment operator = associates from right to leff, so an ex-
pression such as x = y = 0 is evaluated as if it had been written x = (y = 0), which, as we’ll
soon see, first assigns 0 to y, then assigns the resulr of that assignment—0—to x.

Operators Associativity

O [See caution in Fig. 2.10] grouping parentheses

d / % left to right multiplicative

+ = left to right additive

<< >> left to right stream insertion/extraction
< <= > = left to right relational

= I= left to right equality

= right to left assignment

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

2.8 Wrap-Up 57

w75 Good Programming Practice 2.11

Refer to the operator precedence and associativity chart (Appendix A) when writing ex-
pressions containing many operators. Confirm that the operators in the expression are per-
formed in the order you expect. If you're uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to force
the order of evaluation, exactly as youd do in an algebraic expression. Be sure to observe
that some operators such as assignment (=) associate right to left rather than left to right.

[E = W)

2.8 Wrap-Up

You learned many important basic features of C++ in this chapter, including displaying
data on the screen, inputting data from the keyboard and declaring variables of fundamen-
tal types. In particular, you learned to use the output stream object cout and the input
stream object cin to build simple interactive programs. We explained how variables are
stored in and retrieved from memory. You also learned how to use arithmetic operators to
perform calculations. We discussed the order in which C++ applies operators (i.e., the
rules of operator precedence), as well as the associativity of the operators. You also learned
how C++’s i f statement allows a program to make decisions. Finally, we introduced the
equality and relational operators, which you use to form conditions in i f statements.

The non-object-oriented applications presented here introduced you to basic pro-
gramming concepts. As you'll see in Chapter 3, C++ applications typically contain just a
few lines of code in function main—these statements normally create the objects that per-
form the work of the application, then the objects “take over from there.” In Chapter 3,
you'll learn how to implement your own classes and use objects of those classes in appli-
cations.

Summary

Section 2.2 First Program in C++: Printing a Line of Text
* Single-line comments (p. 40) begin with //. You insert comments to document your programs
and improve their readability.

* Comments do not cause the computer to perform any action (p. 41) when the program is run—
they’re ignored by the compiler and do not cause any machine-language object code to be gen-
erated.

* A preprocessing directive (p. 40) begins with # and is a message to the C++ preprocessor. Prepro-
cessing directives are processed before the program is compiled.

* The line #include <iostream> (p. 40) tells the C++ preprocessor to include the contents of the
input/output stream header, which contains information necessary to compile programs that use
std::cin (p. 46) and std: :cout (p. 41) and the stream insertion (<<, p. 42) and stream extrac-
tion (>>, p. 46) operators.

* White space (i.e., blank lines, space characters and tab characters, p. 40) makes programs easier
to read. White-space characters outside of string literals are ignored by the compiler.

* C++ programs begin executing at main (p. 41), even if main does not appear first in the program.

* The keyword int to the left of main indicates that main “returns” an integer value.

58 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

The body (p. 41) of every function must be contained in braces ({ and 3).

A string (p. 41) in double quotes is sometimes referred to as a character string, message or string
literal. White-space characters in strings are 7oz ignored by the compiler.

Most C++ statements (p. 41) end with a semicolon, also known as the statement terminator
(we'll see some exceptions to this soon).

Output and input in C++ are accomplished with streams (p. 41) of characters.

The output stream object std: : cout—normally connected to the screen—is used to output data.
Multiple data items can be output by concatenating stream insertion (<<) operators.

The input stream object std: : cin—normally connected to the keyboard—is used to input data.
Multiple data items can be input by concatenating stream extraction (>>) operators.

The notation std: : cout specifies that we are using cout from “namespace” std.

When a backslash (i.e., an escape character) is encountered in a string of characters, the next char-
acter is combined with the backslash to form an escape sequence (p. 42).

The newline escape sequence \n (p. 42) moves the cursor to the beginning of the next line on the
screen.

A message that directs the user to take a specific action is known as a prompt (p. 46).

C++ keyword return (p. 42) is one of several means to exit a function.

Section 2.4 Another C++ Program: Adding Integers

e All variables (p. 45) in a C++ program must be declared before they can be used.

A variable name is any valid identifier (p. 45) that is not a keyword. An identifier is a series of
characters consisting of letters, digits and underscores (_). Identifiers cannot start with a digit.
Identifiers can be any length, but some systems or C++ implementations may impose length re-
strictions.

C++ is case sensitive (p. 45).
Most calculations are performed in assignment statements (p. 47).
A variable is a location in memory (p. 48) where a value can be stored for use by a program.

Variables of type int (p. 45) hold integer values, i.e., whole numbers such as 7, =11, 0, 31914.

Section 2.5 Memory Concepts

Every variable stored in the computer’s memory has a name, a value, a type and a size.

Whenever a new value is placed in a memory location, the process is destructive (p. 48); i.e., the
new value replaces the previous value in that location. The previous value is lost.

When a value is read from memory, the process is nondestructive (p. 49); i.e., a copy of the value
is read, leaving the original value undisturbed in the memory location.

The std: :end1 stream manipulator (p. 47) outputs a newline, then “flushes the output buffer.”

Section 2.6 Arithmetic

C++ evaluates arithmetic expressions (p. 49) in a precise sequence determined by the rules of op-
erator precedence (p. 50) and associativity (p. 50).

Parentheses may be used to group expressions.

Integer division (p. 49) yields an integer quotient. Any fractional part in integer division is truncat-

ed.

The modulus operator, % (p. 50), yields the remainder after integer division.

Self-Review Exercises 59

Section 2.7 Decision Making: Equality and Relational Operators
 The if statement (p. 53) allows a program to take alternative action based on whether a condi-
tion is met. The format for an i f statement is

if (condition)

statement;

If the condition is true, the statement in the body of the if is executed. If the condition is not
met, i.e., the condition is false, the body statement is skipped.

* Conditions in if statements are commonly formed by using equality and relational operators
(p. 53). The result of using these operators is always the value true or false.

* The using declaration (p. 55)

using std::cout;

informs the compiler where to find cout (namespace std) and eliminates the need to repeat the
std: : prefix. The using directive (p. 55)

using namespace std;

enables the program to use all the names in any included C++ standard library header.

Self-Review Exercises
2.1 Fill in the blanks in each of the following.

a)
b)
o)
d)

e)

Every C++ program begins execution at the function

A(n) begins the body of every function and a(n) ends the body.
Most C++ statements end with a(n)

The escape sequence \n represents the character, which causes the cursor to
position to the beginning of the next line on the screen.

The statement is used to make decisions.

2.2 State whether each of the following is #rue or false. If false, explain why. Assume the state-
ment using std: :cout; is used.

a)
b)

o)
d)
e)
f)
g)
h)
i)

Comments cause the computer to print the text after the // on the screen when the pro-
gram is executed.

The escape sequence \n, when output with cout and the stream insertion operator,
causes the cursor to position to the beginning of the next line on the screen.

All variables must be declared before they’re used.

All variables must be given a type when they’re declared.

C++ considers the variables number and NuMbEr to be identical.

Declarations can appear almost anywhere in the body of a C++ function.

The modulus operator (%) can be used only with integer operands.

The arithmetic operators *, /, %, + and — all have the same level of precedence.

A C++ program that prints three lines of output must contain three statements using
cout and the stream insertion operator.

2.3 Write a single C++ statement to accomplish each of the following (assume that neither
using declarations nor a using directive have been used):

a)
b)

Declare the variables c, thisIsAvariable, 76354 and number to be of type int (in one
statement).

Prompt the user to enter an integer. End your prompting message with a colon (:) fol-
lowed by a space and leave the cursor positioned after the space.

Read an integer from the user at the keyboard and store it in integer variable age.

If the variable number is not equal to 7, print "The variable number is not equal to 7".

60 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

e) Print the message "This is a C++ program" on one line.

f) Print the message "This is a C++ program" on two lines. End the first line with C++.

g) Print the message "This is a C++ program” with each word on a separate line.

h) Print the message "This is a C++ program". Separate each word from the next by a tab.

2.4 Write a statement (or comment) to accomplish each of the following (assume that using
declarations have been used for cin, cout and end1):
a) State that a program calculates the product of three integers.
b) Declare the variables x, y, z and result to be of type int (in separate statements) and
initalize each to 0.
¢) Prompt the user to enter three integers.
d) Read three integers from the keyboard and store them in the variables x, y and z.
¢) Compute the product of the three integers contained in variables x, y and z, and assign
the result to the variable result.
f) Print "The product is " followed by the value of the variable result.
g) Return a value from main indicating that the program terminated successfully.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
and displays the product of three integers. Add comments to the code where appropriate. [Note:
You’ll need to write the necessary using declarations or directive.]

2.6 Identify and correct the errors in each of the following statements (assume that the state-
ment using std: :cout; is used):
a) if (c<7);
cout << 5
b) if (c = 7)

cout << H

Answers to Self-Review Exercises
2.1 a) main. b) left brace ({), right brace (3). ¢) semicolon. d) newline. e) if.

2.2 a) False. Comments do not cause any action to be performed when the program is exe-

cuted. They’re used to document programs and improve their readability.

b) True.

c) True.

d) True.

e) False. C++ is case sensitive, so these variables are different.

f) True.

g) True.

h) False. The operators *, / and % have the same precedence, and the operators + and - have
a lower precedence.

i) False. One statement with cout and multiple \n escape sequences can print several lines.

2.3 a) int c, thisIsAVariable, q76354, number;
b) std::cout << ;
c) std::cin >> age;
d) if (number != 7)
std::cout << H
e) std::cout << ;
f) std::cout << ;
g) std::cout << 3
h) std::cout << :

Exercises 61

2.4 a) // Calculate the product of three integers
b) dint x = 0;
int y = 0;
int z = 0;
int result = 0;
c) cout << :
d) cin >> x >> y >> z;
e) result = x *y * z;
f) cout << << result << endl;
g) return 0;
2.5 (See program below.)
1 // Calculate the product of three integers
2 #include <iostream> // allows program to perform input and output
3 using namespace std; // program uses names from the std namespace
4
5 // function main begins program execution
6 1int mainQ)
7 {
8 int x = 0; // first integer to multiply
9 int y = 0; // second integer to multiply
10 int z = 0; // third integer to multiply
11 int result = 0; // the product of the three integers
12
13 cout << ; // prompt user for data
14 cin >> X >> y >> z; // read three integers from user
15 result = x * y * z; // multiply the three integers; store result
16 cout << << result << endl; // print result; end line
17 } // end function main
2.6 a) Error: Semicolon after the right parenthesis of the condition in the i f statement.
Correction: Remove the semicolon after the right parenthesis. [Voze: The result of this
error is that the output statement executes whether or not the condition in the if state-
ment is true.] The semicolon after the right parenthesis is a null (or empty) statement
that does nothing. We’ll learn more about the null statement in Chapter 4.
b) Error: The relational operator =>.
Correction: Change => to >=, and you may want to change “equal to or greater than” to
“greater than or equal to” as well.
Exercises
2.7 Discuss the meaning of each of the following objects:
a) std::cin
b) std::cout
2.8 Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The object used to print information on the screen is
c) A C++ statement that makes a decision is .
d) Most calculations are normally performed by statements.
e) The object inputs values from the keyboard.
2.9 Write a single C++ statement or line that accomplishes each of the following:

a) Print the message "Enter two numbers".

62 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

b) Assign the product of variables b and ¢ to variable a.

¢) State that a program performs a payroll calculation (i.e., use text that helps to document
a program).

d) Input three integer values from the keyboard into integer variables a, b and c.

2.10 State which of the following are #rue and which are false. If false, explain your answers.
a) C++ operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,
his_account_total, a, b, ¢, z, z2.
¢) The statement cout << "a = 5;"; is a typical example of an assignment statement.
d) A valid C++ arithmetic expression with no parentheses is evaluated from left to right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic
expression? .

¢) Alocation in the computer’s memory that may contain different values at various times
throughout the execution of a program is called a(n)

2.12 What, if anything, prints when each of the following C++ statements is performed? If noth-
ing prints, then answer “nothing.” Assume x = 2and y = 3.

a) cout << X;

b) cout << x + x;

C) cout << 5

d) cout << << X:
€) cout << X + y << <Y + X;
) z=x+y;

g) cin >> x >> y;
h) // cout << "x +y =" << x + y;
i) cout << ;

2.13 Which of the following C++ statements contain variables whose values are replaced?
a) cin >> b >> c >> d >> e > f;
b) p=i+3j+k+7;
C) cout << 5
d) cout << 5

2.14 Given the algebraic equation y = ax3 + 7, which of the following, if any, are correct C++
statements for this equation?

Q) y=a*x*x*x+7;

b) y=a*x*x* (x+7);
Q y=Ca*x)*x*(x+7);
d) y=(@=*x)*x*x+7;

e) y=a* (x*x*x)+7;

) y=a*x*(x*x+7);

2.15 (Order of Evalution) State the order of evaluation of the operators in each of the following
C++ statements and show the value of x after each statement is performed.

Q) x=7+3%6/2-1;

b) x=2%2+2%*2-2/2;

€ x=(3*9* (3+(9*3/(3))));

Exercises 63

2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains the two
numbers from the user and prints the sum, product, difference, and quotient of the two numbers.

2.17 (Printing) Write a program that prints the numbers 1 to 4 on the same line with each pair
of adjacent numbers separated by one space. Do this several ways:

a) Using one statement with one stream insertion operator.

b) Using one statement with four stream insertion operators.

¢) Using four statements.

2.18 (Comparing Integers) Write a program that asks the user to enter two integers, obtains the
numbers from the user, then prints the larger number followed by the words "is 1arger." If the
numbers are equal, print the message "These numbers are equal.”

2.19 (Arithmetic, Smallest and Largest) Write a program that inputs three integers from the key-
board and prints the sum, average, product, smallest and largest of these numbers. The screen dialog
should appear as follows:

Input three different integers: 13 27 14
Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

2.20 (Diameter, Circumference and Area of a Circle) Write a program that reads in the radius of
a circle as an integer and prints the circle’s diameter, circumference and area. Use the constant value
3.14159 for 1. Do all calculations in output statements. [/Vote: In this chapter, we’ve discussed only
integer constants and variables. In Chapter 4 we discuss floating-point numbers, i.e., values that can
have decimal points.]

2.21 (Displaying Shapes with Asterisks) Write a program that prints a box, an oval, an arrow and
a diamond as follows:

ek kS *

*

*

Fedededededkddd ek

2.22 What does the following code print?

cout << << endl;

2.23 (Largest and Smallest Integers) Write a program that reads in five integers and determines
and prints the largest and the smallest integers in the group. Use only the programming techniques
you learned in this chapter.

2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether
it’s odd or even. [Hint: Use the modulus operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

64 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

2.25 (Multiples) Write a program that reads in two integers and determines and prints if the first
is a multiple of the second. [Hint: Use the modulus operator.]

2.26 (Checkerboard Pattern) Display the following checkerboard pattern with eight output

statements, then display the same pattern using as few statements as possible.

2.27 (Integer Equivalent of a Character) Here is a peek ahead. In this chapter you learned about
integers and the type int. C++ can also represent uppercase letters, lowercase letters and a consider-
able variety of special symbols. C++ uses small integers internally to represent each different charac-
ter. The set of characters a computer uses and the corresponding integer representations for those
characters are called that computer’s character set. You can print a character by enclosing that char-
acter in single quotes, as with

cout << ; // print an uppercase A
You can print the integer equivalent of a character using static_cast as follows:

cout << static_cast< int >(); // print 'A' as an integer

This is called a cast operation (we formally introduce casts in Chapter 4). When the preceding
statement executes, it prints the value 65 (on systems that use the ASCII character set). Write a
program that prints the integer equivalent of a character typed at the keyboard. Store the inputin a
variable of type char. Test your program several times using uppercase letters, lowercase letters, dig-
its and special characters (like $).

2.28 (Digits of an Integer) Write a program that inputs a five-digit integer, separates the integer
into its digits and prints them separated by three spaces each. [Hinz: Use the integer division and
modulus operators.] For example, if the user types in 42339, the program should print:

2.29 (Table) Using the techniques of this chapter, write a program that calculates the squares and
cubes of the integers from 0 to 10. Use tabs to print the following neatly formatted table of values:

integer square cube

0 0 0

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Making a Difference 65

Making a Difference
2.30 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.9. The formulas for calculating BMI are

BMI = weightlnPounds < 703
B heightinlnchesx heightlnlnches

or

BMI = weightInKilograms
heightInMeters x heightInMeters

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

BMI VALUES

Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you'll
learn to use the doubTe type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.31 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.

b) Cost per gallon of gasoline.

c) Average miles per gallon.

d) Parking fees per day.

e) Tolls per day.

Nothing can have value without
being an object of utility.
—XKarl Marx

Your public servants serve you
right.

—Adlai E. Stevenson

Knowing how to answer
one who speaks,

1o reply to one who
sends a message.

—Amenemopel

Objectives
In this chapter you'll learn:

= How to define a class and use
it to create an object.

m How to implement a class’s
behaviors as member
functions.

m How to implement a class’s
attributes as data members.

m How to call a member
function of an object to
perform a task.

m The differences between data
members of a class and local
variables of a function.

= How to use a constructor to
initialize an object’s data
when the object is created.

m How to engineer a class to
separate its interface from its
implementation and
encourage reuse.

m How to use objects of class
string.

Introduction to Classes,
Objects and Strings

3.1 Introduction 67

3.1 Introduction 3.6 Placing a Class in a Separate File for
3.2 Defining a Class with a Member Reusability

Function 3.7 Separating Interface from
3.3 Defining a Member Function with a Implementation

Parameter 3.8 Validating Data with set Functions
3.4 Data Members, set Member 3.9 Wrap-Up

Functions and get Member Functions

3.5 Initializing Objects with
Constructors

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

3.1 Introduction

In Chapter 2, you created simple programs that displayed messages to the user, obtained
information from the user, performed calculations and made decisions. In this chapter,
you'll begin writing programs that employ the basic concepts of object-oriented program-
ming that we introduced in Section 1.8. One common feature of every program in
Chapter 2 was that all the statements that performed tasks were located in function main.
Typically, the programs you develop in this book will consist of function main and one or
more classes, each containing data members and member functions. If you become part of a
development team in industry, you might work on software systems that contain hun-
dreds, or even thousands, of classes. In this chapter, we develop a simple, well-engineered
framework for organizing object-oriented programs in C++.

We present a carefully paced sequence of complete working programs to demonstrate
creating and using your own classes. These examples begin our integrated case study on
developing a grade-book class that instructors can use to maintain student test scores. We
also introduce the C++ standard library class string.

3.2 Defining a Class with a Member Function

We begin with an example (Fig. 3.1) that consists of class GradeBook (lines 8—16)—which,
when it’s fully developed in Chapter 7, will represent a grade book that an instructor can
use to maintain student test scores—and a main function (lines 19-23) that creates a
GradeBook object. Function main uses this object and its displayMessage member func-
tion (lines 12—15) to display a message on the screen welcoming the instructor to the
grade-book program.

// Fig. 3.1: fig03_01l.cpp

// Define class GradeBook with a member function displayMessage,

// create a GradeBook object, and call its displayMessage function.
#include <iostream>

using namespace std;

Ndh WN -

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part | of 2.)

68 Chapter 3 Introduction to Classes, Objects and Strings

6
7 // GradeBook class definition
8 class GradeBook

9

{
10 public:
11 // function that displays a welcome message to the GradeBook user
12 void displayMessage() const
13 {
14 cout << << endl;
15 } // end function displayMessage
16 }; // end class GradeBook
17

18 // function main begins program execution
19 1int mainQ)

20 {
21 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
22 myGradeBook.displayMessage(); // call object's displayMessage function

23 } // end main

Welcome to the Grade Book!

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

Class GradeBook

Before function main (lines 19-23) can create a GradeBook object, we must tell the com-
piler what member functions and data members belong to the class. The GradeBook class
definition (lines 8—16) contains a member function called displayMessage (lines 12—15)
that displays a message on the screen (line 14). We need to make an object of class Grade-
Book (line 21) and call its dispTlayMessage member function (line 22) to get line 14 to
execute and display the welcome message. We'll soon explain lines 21-22 in detail.

The class definition begins in line 8 with the keyword class followed by the class
name GradeBook. By convention, the name of a user-defined class begins with a capital
letter, and for readability, each subsequent word in the class name begins with a capital
letter. This capitalization style is often referred to as Pascal case, because the convention
was widely used in the Pascal programming language. The occasional uppercase letters
resemble a camel’s humps. More generally, camel case capitalization style allows the first
letter to be either lowercase or uppercase (e.g., myGradeBook in line 21).

Every class’s body is enclosed in a pair of left and right braces ({ and 3), as in lines 9
and 16. The class definition terminates with a semicolon (line 16).

T
\ Forgetting the semicolon at the end of a class definition is a syntax error.

i -zl !? Common Programming Error 3.1

Do Z

Recall that the function main is always called automatically when you execute a pro-
gram. Most functions do 7oz get called automatically. As you’ll soon see, you must call
member function displayMessage explicitly to tell it to perform its task.

Line 10 contains the keyword public, which is an access specifier. Lines 1215 define
member function displayMessage. This member function appears affer access specifier

3.2 Defining a Class with a Member Function 69

public: to indicate that the function is “available to the public”—that is, it can be called
by other functions in the program (such as main), and by member functions of other
classes (if there are any). Access specifiers are always followed by a colon (:). For the
remainder of the text, when we refer to the access specifier public in the text, we’ll omit
the colon as we did in this sentence. Section 3.4 introduces the access specifier private.
Later in the book we’ll study the access specifier protected.

Each function in a program performs a task and may rezurn a value when it completes
its task—for example, a function might perform a calculation, then return the result of
that calculation. When you define a function, you must specify a return type to indicate
the type of the value returned by the function when it completes its task. In line 12, key-
word void to the left of the function name displayMessage is the function’s return type.
Return type void indicates that displayMessage will ot return any data to its calling
function (in this example, line 22 of main, as we’ll see in a moment) when it completes its
task. In Fig. 3.5, you'll see an example of a function that does return a value.

The name of the member function, displayMessage, follows the return type (line
12). By convention, our function names use the camel case style with a lowercase first letter.
The parentheses after the member function name indicate that this is a finction. An empty
set of parentheses, as shown in line 12, indicates that this member function does 7ot
require additional data to perform its task. You'll see an example of a member function
that does require additional data in Section 3.3.

We declared member function displayMessage const in line 12 because in the pro-
cess of displaying "Welcome to the Grade Book!" the function does not, and should not,
modify the GradeBook object on which it’s called. Declaring displayMessage const tells
the compiler, “this function should 7oz modify the object on which it’s called—if it does,
please issue a compilation error.” This can help you locate errors if you accidentally insert
code in displayMessage that would modify the object. Line 12 is commonly referred to
as a function header.

Every function’s body is delimited by left and right braces ({ and }), as in lines 13 and
15. The function body contains statements that perform the function’s task. In this case,
member function displayMessage contains one statement (line 14) that displays the mes-
sage "Welcome to the Grade Book!". After this statement executes, the function has com-
pleted its task.

Testing Class GradeBook
Next, we'd like to use class GradeBook in a program. As you saw in Chapter 2, the function
main (lines 19-23) begins the execution of every program.

In this program, we’d like to call class GradeBook’s displayMessage member function
to display the welcome message. Typically, you cannot call a member function of a class
until you create an object of that class. (As you’ll learn in Section 9.14, static member
functions are an exception.) Line 21 creates an object of class GradeBook called myGrade-
Book. The variable’s type is GradeBook—the class we defined in lines 8—-16. When we
declare variables of type int, as we did in Chapter 2, the compiler knows what int is—it’s
a fundamental type that’s “built into” C++. In line 21, however, the compiler does 7oz auto-
matically know what type GradeBook is—it’s a user-defined type. We tell the compiler
what GradeBook is by including the class definition (lines 8-16). If we omitted these lines,
the compiler would issue an error message. Each class you create becomes a new gpe that

70 Chapter 3 Introduction to Classes, Objects and Strings

can be used to create objects. You can define new class types as needed; this is one reason
why C++ is known as an extensible programming language.

Line 22 calls the member function displayMessage using variable myGradeBook fol-
lowed by the dot operator (.), the function name displayMessage and an empty set of
parentheses. This call causes the displayMessage function to perform its task. At the
beginning of line 22, “myGradeBook.” indicates that main should use the GradeBook object
that was created in line 21. The empty parentheses in line 12 indicate that member function
displayMessage does not require additional data to perform its task, which is why we
called this function with empty parentheses in line 22. (In Section 3.3, you’ll see how to
pass data to a function.) When displayMessage completes its task, the program reaches
the end of main (line 23) and terminates.

UML Class Diagram for Class GradeBook

Recall from Section 1.8 that the UML is a standardized graphical language used by soft-
ware developers to represent their object-oriented systems. In the UML, each class is mod-
eled in a UML class diagram as a rectangle with three compartments. Figure 3.2 presents a
class diagram for class GradeBook (Fig. 3.1). The rop compartment contains the class’s name
centered horizontally and in boldface type. The middle compartment contains the class’s
actributes, which correspond to data members in C++. This compartment is currently
empty, because class GradeBook does not yet have any attributes. (Section 3.4 presents a
version of class GradeBook with an attribute.) The borzom compartment contains the class’s
operations, which correspond to member functions in C++. The UML models operations
by listing the operation name followed by a set of parentheses. Class GradeBook has only
one member function, displayMessage, so the bottom compartment of Fig. 3.2 lists one
operation with this name. Member function displayMessage does 7ot require additional
information to perform its tasks, so the parentheses following displayMessage in the class
diagram are empry, just as they are in the member function’s header in line 12 of Fig. 3.1.
The plus sign (+) in front of the operation name indicates that displayMessage is a public
operation in the UML (i.e., a pub1ic member function in C++).

Fig. 3.2 | UML class diagram indicating that class GradeBook has a public dispTayMessage
operation.

3.3 Defining a Member Function with a Parameter

In our car analogy from Section 1.8, we mentioned that pressing a car’s gas pedal sends a
message to the car to perform a task—make the car go faster. But how fast should the car
accelerate? As you know, the farther down you press the pedal, the faster the car acceler-
ates. So the message to the car includes both the task to perform and additional information
that helps the car perform the rask. This additional information is known as a parameter—
the value of the parameter helps the car determine how fast to accelerate. Similarly, a mem-

3.3 Defining a Member Function with a Parameter 71

ber function can require one or more parameters that represent additional data it needs to
perform its task. A function call supplies values—called arguments—for each of the func-
tion’s parameters. For example, to make a deposit into a bank account, suppose a deposit
member function of an Account class specifies a parameter that represents the deposit
amount. When the deposit member function is called, an argument value representing
the deposit amount is copied to the member function’s parameter. The member function
then adds that amount to the account balance.

Defining and Testing Class GradeBook

Our next example (Fig. 3.3) redefines class GradeBook (lines 9-18) with a display-
Message member function (lines 13—17) that displays the course name as part of the wel-
come message. The new version of displayMessage requires a parameter (courseName in
line 13) that represents the course name to output.

1 // Fig. 3.3: fig03_03.cpp

2 // Define class GradeBook with a member function that takes a parameter,
3 // create a GradeBook object and call its displayMessage function.

4 #include <iostream>

5 #include <string> // program uses C++ standard string class

6 using namespace std;

7

8 // GradeBook class definition

9 class GradeBook

10 {

11 public:

12 // function that displays a welcome message to the GradeBook user
13 void displayMessage(string courseName) const

14 {

15 cout << "Welcome to the grade book for\n" << courseName << "!I"
16 << endl;

17 } // end function displayMessage

18 }; // end class GradeBook

19

20 // function main begins program execution
21 int mainQ)

22 {

23 string nameOfCourse; // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25

26 // prompt for and input course name

27 cout << "Please enter the course name:" << endl;

28 getline(cin, nameOfCourse); // read a course name with blanks

29 cout << endl; // output a blank Tine

30

31 // call myGradeBook's displayMessage function

32 // and pass nameOfCourse as an argument

33 myGradeBook.displayMessage(nameOfCourse);

34 1} // end main

Fig. 3.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function. (Part | of 2.)

72 Chapter 3 Introduction to Classes, Objects and Strings

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

Before discussing the new features of class GradeBook, let’s see how the new class is
used in main (lines 21-34). Line 23 creates a variable of type string called nameOfCourse
that will be used to store the course name entered by the user. A variable of type string
represents a string of characters such as “CS101 Introduction to C++ Programming”. A
string is actually an object of the C++ Standard Library class string. This class is defined
in header <string>, and the name string, like cout, belongs to namespace std. To
enable lines 13 and 23 to compile, line 5 includes the <string> header. The using direc-
tive in line 6 allows us to simply write string in line 23 rather than std: :string. For
now, you can think of string variables like variables of other types such as int. You’ll
learn additional string capabilities in Section 3.8 and in Chapter 21.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts
the user to enter a course name. Line 28 reads the name from the user and assigns it to the
nameOfCourse variable, using the library function getline to perform the input. Before
we explain this line of code, let’s explain why we cannot simply write

cin >> nameOfCourse;

to obtain the course name.

In our sample program execution, we use the course name “CS101 Introduction to
C++ Programming,” which contains multiple words separated by blanks. (Recall that we
highlight user-entered data in bold.) When reading a string with the stream extraction
operator, cin reads characters uniil the first white-space character is reached. Thus, only
“CS101” would be read by the preceding statement. The rest of the course name would
have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter
to submit it to the program, and we’d like to store the entire course name in the string
variable nameOfCourse. The function call getTine(cin, nameOfCourse) in line 28 reads
characters (including the space characters that separate the words in the input) from the
standard input stream object cin (i.e., the keyboard) until the new/ine character is encoun-
tered, places the characters in the string variable nameOfCourse and discards the newline
character. When you press Enter while entering data, a newline is inserted in the input
stream. The <string> header must be included in the program to use function getline,
which belongs to namespace std.

Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse
variable in parentheses is the argument that’s passed to member function displayMessage so
that it can perform its task. The value of variable name0fCourse in main is copied to member
function displayMessage’s parameter courseName in line 13. When you execute this pro-
gram, member function displayMessage outputs as part of the welcome message the course
name you type (in our sample execution, CS101 Introduction to C++ Programming).

3.3 Defining a Member Function with a Parameter 73

More on Arguments and Parameters

To specify in a function definition that the function requires data to perform its task, you
place additional information in the function’s parameter list, which is located in the pa-
rentheses following the function name. The parameter list may contain 27y number of pa-
rameters, including none at all (represented by empty parentheses as in Fig. 3.1, line 12)
to indicate that a function does 70z require any parameters. The displayMessage member
function’s parameter list (Fig. 3.3, line 13) declares that the function requires one param-
eter. Each parameter specifies a #ype and an identifier. The type string and the identifier
courseName indicate that member function displayMessage requires a string to perform
its task. The member function body uses the parameter courseName to access the value
that’s passed to the function in the function call (line 33 in main). Lines 15-16 display
parameter courseName’s value as part of the welcome message. The parameter variable’s
name (courseName in line 13) can be the same as or different from the argument variable’s
name (nameOfCourse in line 33)—you’ll learn why in Chapter 6.

A function can specify multiple parameters by separating each from the next with a
comma. The number and order of arguments in a function call must match the number
and order of parameters in the parameter list of the called member function’s header. Also,
the argument types in the function call must be consistent with the types of the corre-
sponding parameters in the function header. (As you’ll learn in subsequent chapters, an
argument’s type and its corresponding parameter’s type need not always be identical, but
they must be “consistent.”) In our example, the one string argument in the function call
(i.e., nameOfCourse) exactly matches the one string parameter in the member-function
definition (i.e., courseName).

Updated UML Class Diagram for Class GradeBook

The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class
GradeBook defined in Fig. 3.1, this GradeBook class contains public member function
displayMessage. However, this version of displayMessage has a parameter. The UML
models a parameter by listing the parameter name, followed by a colon and the parameter
type in the parentheses following the operation name. The UML has its own data types
similar to those of C++. The UML is language independent—it’'s used with many different
programming languages—so its terminology does not exactly match that of C++. For ex-
ample, the UML type String corresponds to the C++ type string. Member function
displayMessage of class GradeBook (Fig. 3.3, lines 13-17) has a string parameter named
courseName, so Fig. 3.4 lists courseName : String between the parentheses following the
operation name displayMessage. This version of the GradeBook class still does 70z have
any data members.

Fig. 3.4 | UML class diagram indicating that class GradeBook has a public dispTayMessage
operation with a courseName parameter of UML type String.

74 Chapter 3 Introduction to Classes, Objects and Strings

3.4 Data Members, set Member Functions and get
Member Functions

In Chapter 2, we declared all of a program’s variables in its main function. Variables de-
clared in a function definition’s body are known as local variables and can be used only
from the line of their declaration in the function to the closing right brace (3) of the block
in which they’re declared. A local variable must be declared before it can be used in a func-
tion. A local variable cannot be accessed ousside the function in which it’s declared. When
a function terminates, the values of its local variables are lost. (You’ll see an exception to this
in Chapter 6 when we discuss static local variables.)

A class normally consists of one or more member functions that manipulate the attri-
butes that belong to a particular object of the class. Attributes are represented as variables
in a class definition. Such variables are called data members and are declared 7nside a class
definition but ousside the bodies of the class’s member-function definitions. Each object
of a class maintains its own attributes in memory. These attributes exist throughout the
life of the object. The example in this section demonstrates a GradeBook class that contains
a courseName data member to represent a particular GradeBook object’s course name. If
you create more than one GradeBook object, each will have its own courseName data
member, and these can contain different values.

GradeBook Class with a Data Member, and set and get Member Functions

In our next example, class GradeBook (Fig. 3.5) maintains the course name as a data mem-
ber so that it can be used or modified throughout a program’s execution. The class contains
member functions setCourseName, getCourseName and displayMessage. Member func-
tion setCourseName stores a course name in a GradeBook data member. Member function
getCourseName obtains the course name from that data member. Member function dis-
playMessage—which now specifies 7o parameters—still displays a welcome message that
includes the course name. However, as you'll see, the function now obzains the course
name by calling another function in the same class—getCourseName.

1 // Fig. 3.5: fig03_05.cpp

2 // Define class GradeBook that contains a courseName data member
3 // and member functions to set and get its value;

4 // Create and manipulate a GradeBook object with these functions.
5 #include <iostream>

6 #include <string> // program uses C++ standard string class

7 using namespace std;

8

9 // GradeBook class definition

10 class GradeBook

11 {

12 public:

13 // function that sets the course name

14 void setCourseName(string name)

15 {

16 courseName = name; // store the course name in the object
17 } // end function setCourseName

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get member
functions. (Part | of 2.)

3.4 Data Members, set Member Functions and get Member Functions 75

18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54

// function that gets the course name
string getCourseName() const
{
return courseName; // return the object's courseName
} // end function getCourseName

// function that displays a welcome message
void displayMessage() const
{
// this statement calls getCourseName to get the
// name of the course this GradeBook represents
cout << "Welcome to the grade book for\n" << getCourseName() <<
<< endl;
} // end function displayMessage

private:

string courseName; // course name for this GradeBook

}; // end class GradeBook

// function main begins program execution
int main(Q)

{

string nameOfCourse; // string of characters to store the course name
GradeBook myGradeBook; // create a GradeBook object named myGradeBook

// display initial value of courseName
cout << "Initial course name is: " << myGradeBook.getCourseName()
<< endl;

// prompt for, input and set course name

cout << "\nPlease enter the course name:" << endl;

getline(cin, nameOfCourse); // read a course name with blanks
myGradeBook.setCourseName(nameOfCourse); // set the course name

cout << endl; // outputs a blank Tine
myGradeBook.displayMessage(); // display message with new course name

} // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get member
functions. (Part 2 of 2.)

A typical instructor teaches several courses, each with its own course name. Line 34
declares that courseName is a variable of type string. Because the variable is declared in
the class definition (lines 10-35) but outside the bodies of the class’s member-function
definitions (lines 14-17, 20-23 and 26-32), the variable is a data member. Every instance

76 Chapter 3 Introduction to Classes, Objects and Strings

(i.e., object) of class GradeBook contains each of the class’s data members—if there are two
GradeBook objects, each has its own courseName (one per object), as you'll see in the
example of Fig. 3.7. A benefit of making courseName a data member is that #// the member
functions of the class can manipulate any data members that appear in the class definition
(in this case, courseName).

Access Specifiers public and private

Most data-member declarations appear after the private access specifier. Variables or
functions declared after access specifier private (and before the next access specifier if there
is one) are accessible only to member functions of the class for which they’re declared (or
to “friends” of the class, as you'll see in Chapter 9). Thus, data member courseName can
be used only in member functions setCourseName, getCourseName and displayMessage
of class GradeBook (or to “friends” of the class, if there are any).

.z Error-Prevention Tip 3.1

Making the data members of a class private and the member functions of the class pub-
Tic facilitates debugging because problems with data manipulations are localized to ei-
ther the class’s member functions or the friends of the class.

-
-

35 Common Programming Error 3.2
";z An attempt by a function, which is not a member of a particular class (or a friend of that

— class) to access a private member of that class is a compilation error.

The defaulr access for class members is private so all members affer the class header
and before the first access specifier (if there are any) are private. The access specifiers
public and private may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When
a program creates a GradeBook object, data member courseName is encapsulated (hidden)
in the object and can be accessed only by member functions of the object’s class. In class
GradeBook, member functions setCourseName and getCourseName manipulate the data
member courseName directly.

Member Functions setCourseName and getCourseName
Member function setCourseName (lines 14-17) does not return any data when it com-
pletes its task, so its return type is void. The member function receives one parameter—
name—which represents the course name that will be passed to it as an argument (as we’ll
see in line 50 of main). Line 16 assigns name to data member courseName, thus modifying
the object—for this reason, we do 7ot declare setCourseName const. In this example, set-
CourseName does not validate the course name—i.e., the function does not check that the
course name adheres to any particular format or follows any other rules regarding what a
“valid” course name looks like. Suppose, for instance, that a university can print student
transcripts containing course names of only 25 characters or fewer. In this case, we might
want class GradeBook to ensure that its data member courseName never contains more
than 25 characters. We discuss validation in Section 3.8.

Member function getCourseName (lines 20-23) returns a particular GradeBook
object’s courseName, withour modifying the object—for this reason, we declare get-
CourseName const. The member function has an empry parameter list, so it does not require

3.4 Data Members, set Member Functions and get Member Functions 77

additional data to perform its task. The function specifies that it returns a string. When
a function that specifies a return type other than void is called and completes its task, the
function uses a return statement (as in line 22) to return a result to its calling function.
For example, when you go to an automated teller machine (ATM) and request your
account balance, you expect the ATM to give you a value that represents your balance.
Similarly, when a statement calls member function getCourseName on a GradeBook object,
the statement expects to receive the GradeBook’s course name (in this case, a string, as
specified by the function’s return type).

If you have a function square that returns the square of its argument, the statement

result = square(2);

returns 4 from function square and assigns to variable result the value 4. If you have a
function maximum that returns the largest of three integer arguments, the statement

biggest = maximum(27, 5);

returns 114 from function maximum and assigns this value to variable biggest.

The statements in lines 16 and 22 each use variable courseName (line 34) even though
it was 7ot declared in any of the member functions. We can do this because courseName
is a data member of the class and data members are accessible from a class’s member func-
tions.

Member Function displayMessage

Member function displayMessage (lines 26-32) does 7ot return any data when it com-
pletes its task, so its return type is void. The function does 7ot receive parameters, so its
parameter list is empty. Lines 30-31 output a welcome message that includes the value of
data member courseName. Line 30 calls member function getCourseName to obtain the
value of courseName. Member function displayMessage could also access data member
courseName directly, just as member functions setCourseName and getCourseName do.
We explain shortly why it’s preferable from a software engineering perspective to call
member function getCourseName to obtain the value of courseName.

Testing Class GradeBook

The main function (lines 38-54) creates one object of class GradeBook and uses each of its
member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 4445
display the initial course name by calling the object’s getCourseName member function. The
first line of the output does not show a course name, because the object’s courseName data
member (i.e., a string) is initially empty—by defaul, the initial value of a string is the
so-called empty string, i.e., a string that does not contain any characters. Nothing appears
on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable name0OfCourse
(declared in line 40) is set to the course name entered by the user, which is obtained by the
call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName
member function and supplies nameOfCourse as the function’s argument. When the func-
tion is called, the argument’s value is copied to parameter name (line 14) of member func-
tion setCourseName. Then the parameter’s value is assigned to data member courseName
(line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage
member function to display the welcome message containing the course name.

78 Chapter 3 Introduction to Classes, Objects and Strings

Software Engineering with Set and Get Functions

A class’s private data members can be manipulated o7y by member functions of that class
(and by “friends” of the class as you'll see in Chapter 9). So a client of an object—that is,
any statement that calls the object’s member functions from outside the object—calls the
class’s pub1ic member functions to request the class’s services for particular objects of the
class. This is why the statements in function main call member functions setCourseName,
getCourseName and dispTlayMessage on a GradeBook object. Classes often provide pub1ic
member functions to allow clients of the class to sez (i.e., assign values to) or gt (i.e., obtain
the values of) private data members. These member function names need not begin with
set or get, but this naming convention is common. In this example, the member function
that sets the courseName data member is called setCourseName, and the member function
that gets the value of the courseName data member is called getCourseName. Set functions
are sometimes called mutators (because they mutate, or change, values), and get functions
are also called accessors (because they access values).

Recall that declaring data members with access specifier private enforces data hiding.
Providing pubTic set and get functions allows clients of a class to access the hidden data,
but only indirectly. The client knows that it’s attempting to modify or obtain an object’s
data, but the client does 70t know how the object performs these operations. In some cases,
a class may internally represent a piece of data one way, but expose that data to clients in
a different way. For example, suppose a Clock class represents the time of day as a private
int data member time that stores the number of seconds since midnight. However, when
a client calls a Clock object’s getTime member function, the object could return the time
with hours, minutes and seconds in a string in the format "HH:MM: SS". Similarly, suppose
the Clock class provides a sez function named setTime that takes a string parameter in
the "HH:MM:SS" format. Using string capabilities presented in Chapter 21, the setTime
function could convert this string to a number of seconds, which the function stores in
its private data member. The sez function could also check that the value it receives rep-
resents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). The sez and gez func-
tions allow a client to interact with an object, but the object’s private data remains safely
encapsulated (i.e., hidden) in the object itself.

The set and ger functions of a class also should be used by other member functions
within the class to manipulate the class’s private data, even though these member func-
tions can access the private data directly. In Fig. 3.5, member functions setCourseName
and getCourseName are pubTlic member functions, so they’re accessible to clients of the
class, as well as to the class itself. Member function displayMessage calls member func-
tion getCourseName to obtain the value of data member courseName for display purposes,
even though displayMessage can access courseName directly—accessing a data member
via its get function creates a better, more robust class (i.e., a class that’s easier to maintain
and less likely to malfunction). If we decide to change the data member courseName in
some way, the displayMessage definition will 7ot require modification—only the bodies
of the get and set functions that directly manipulate the data member will need to change.
For example, suppose we want to represent the course name as two separate data mem-
bers—courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Pro-
gramming"). Member function displayMessage can still issue a single call to member
function getCourseName to obtain the full course name to display as part of the welcome
message. In this case, getCourseName would need to build and return a string containing

3.5 Initializing Objects with Constructors 79

the courseNumber followed by the courseTitle. Member function displayMessage
could continue to display the complete course title “CS101 Introduction to C++ Program-
ming.” The benefits of calling a ser function from another member function of the same
class will become clearer when we discuss validation in Section 3.8.

\ Always try to localize the effects of changes to a class’s data members by accessing and ma-
nipulating the data members through their corresponding get and set functions.

-y Good Programming Practice 3.1

Write programs that are clear and easy to maintain. Change is the rule rather than the

E Software Engineering Observation 3.1
|
exception. You should anticipate that your code will be modified, and possibly often.

GradeBook’s UML Class Diagram with a Data Member and set and get Functions
Figure 3.6 contains an updated UML class diagram for the version of class GradeBook in
Fig. 3.5. This diagram models GradeBook’s data member courseName as an attribute in the
middle compartment. The UML represents data members as attributes by listing the at-
tribute name, followed by a colon and the attribute type. The UML type of attribute
courseName is String, which corresponds to string in C++. Data member courseName is
private in C++, so the class diagram lists a minus sign () in front of the corresponding
attribute’s name. Class GradeBook contains three pub1ic member functions, so the class
diagram lists three operations in the third compartment. Operation setCourseName has a
String parameter called name. The UML indicates the return type of an operation by plac-
ing a colon and the return type after the parentheses following the operation name. Mem-
ber function getCourseName of class GradeBook has a string return type in C++, so the
class diagram shows a String return type in the UML. Operations setCourseName and
displayMessage do not return values (i.e., they return void in C++), so the UML class
diagram does not specify a return type after the parentheses of these operations.

Fig. 3.6 | UML class diagram for class GradeBook with a private courseName attribute and
public operations setCourseName, getCourseName and displayMessage.

3.5 Initializing Objects with Constructors

As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.5) is created, its data
member courseName is initialized to the empty string by default. What if you want to pro-
vide a course name when you creaze a GradeBook object? Each class you declare can provide
one or more constructors that can be used to initialize an object of the class when the object
is created. A constructor is a special member function that must be defined with the same

80 Chapter 3 Introduction to Classes, Objects and Strings

name as the class, so that the compiler can distinguish it from the class’s other member func-
tions. An important difference between constructors and other functions is that constructors
cannot return values, so they cannot specify a return type (not even void). Normally, con-
structors are declared public. In the early chapters, our classes will generally have one con-
structor—in later chapters, you’ll see how to create classes with more that one constructor
using the technique of function overloading, which we introduce in Section 6.18.

C++ automatically calls a constructor for each object that’s created, which helps
ensure that objects are initialized properly before they’re used in a program. The con-
structor call occurs when the object is created. If a class does not explicitly include construc-
tors, the compiler provides a default constructor with 7o parameters. For example, when
line 41 of Fig. 3.5 creates a GradeBook object, the default constructor is called. The default
constructor provided by the compiler creates a GradeBook object without giving any initial
values to the object’s fundamental type data members. For data members that are objects
of other classes, the default constructor implicitly calls each data member’s default con-
structor to ensure that the data member is initialized properly. This is why the string data
member courseName (in Fig. 3.5) was initialized to the empty string—the default con-
structor for class string sets the string’s value to the empty string.

In the example of Fig. 3.7, we specify a course name for a GradeBook object when the
object is created (e.g., line 47). In this case, the argument "CS101 Introduction to C++
Programming" is passed to the GradeBook object’s constructor (lines 14—18) and used to
initialize the courseName. Figure 3.7 defines a modified GradeBook class containing a con-
structor with a string parameter that receives the initial course name.

1 // Fig. 3.7: fig03_07.cpp

2 // Instantiating multiple objects of the GradeBook class and using
3 // the GradeBook constructor to specify the course name

4 // when each GradeBook object 1is created.

5 #include <iostream>

6 #include <string> // program uses C++ standard string class

7 using namespace std;

8

9 // GradeBook class definition

10 class GradeBook

11 {

12 public:

13 // constructor initializes courseName with string supplied as argument
14 explicit GradeBook(string name)

15 : courseName(name) // member initializer to initialize courseName
16 {

17 // empty body

18 } // end GradeBook constructor

19
20 // function to set the course name
21 void setCourseName(string name)
22 {
23 courseName = name; // store the course name in the object
24 } // end function setCourseName

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part | of 2.)

3.5 Initializing Objects with Constructors 8l

25

26 // function to get the course name

27 string getCourseName() const

28 {

29 return courseName; // return object's courseName
30 } // end function getCourseName

31

32 // display a welcome message to the GradeBook user
33 void displayMessage() const

34 {

35 // call getCourseName to get the courseName

36 cout << "Welcome to the grade bhook for\n" << getCourseName()
37 << "1 << endl;

38 } // end function displayMessage

39 private:

40 string courseName; // course name for this GradeBook
41 }; // end class GradeBook

42

43 // function main begins program execution
44 1int main(Q)

45 {

46 // create two GradeBook objects

47 GradeBook gradeBookl("CS101 Introduction to C++ Programming");

48 GradeBook gradeBook2("CS102 Data Structures in C++");

49

50 // display initial value of courseName for each GradeBook

51 cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
52 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
53 << endl;

54 } // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 2 of 2.)

Defining a Constructor
Lines 1418 of Fig. 3.7 define a constructor for class GradeBook. The constructor has the
same name as its class, GradeBook. A constructor specifies in its parameter list the data it
requires to perform its task. When you create a new object, you place this data in the pa-
rentheses that follow the object name (as we did in lines 47-48). Line 14 indicates that
class GradeBook’s constructor has a string parameter called name. We declared this con-
structor explicit, because it takes a single parameter—this is important for subtle reasons
that you'll learn in Section 10.13. For now, just declare a// single-parameter constructors
explicit. Line 14 does not specify a return type, because constructors cannot return values
(or even void). Also, constructors cannot be declared const (because initializing an object
modifies it).

The constructor uses a member-initializer list (line 15) to initialize the courseName
data member with the value of the constructor’s parameter name. Member initializers
appear between a constructor’s parameter list and the left brace that begins the con-

1

82 Chapter 3 Introduction to Classes, Objects and Strings

structor’s body. The member initializer list is separated from the parameter list with a colon
(:). A member initializer consists of a data member’s variable name followed by paren-
theses containing the member’s 7nitial value. In this example, courseName is initialized
with the value of the parameter name. If a class contains more than one data member, each
data member’s initializer is separated from the next by a comma. The member initializer
list executes before the body of the constructor executes. You can perform initialization in
the constructor’s body, but you’ll learn later in the book that it’s more efficient to do it
with member initializers, and some types of data members must be initialized this way.
Notice that both the constructor (line 14) and the setCourseName function (line 21)
use a parameter called name. You can use the same parameter names in different functions
because the parameters are local to each function—they do 7ot interfere with one another.

Testing Class GradeBook

Lines 44-54 of Fig. 3.7 define the main function that tests class GradeBook and demon-
strates initializing GradeBook objects using a constructor. Line 47 creates and initializes
GradeBook object gradeBookl. When this line executes, the GradeBook constructor (lines
14-18) is called with the argument "CS101 Introduction to C++ Programming" to initial-
ize gradeBookl’s course name. Line 48 repeats this process for GradeBook object
gradeBook2, this time passing the argument "CS102 Data Structures in C++" to initialize
gradeBook2’s course name. Lines 51-52 use each object’s getCourseName member func-
tion to obtain the course names and show that they were indeed initialized when the ob-
jects were created. The output confirms that each GradeBook object maintains its own data
member courseName.

Ways to Provide a Default Constructor for a Class
Any constructor that takes 70 arguments is called a default constructor. A class can get a
default constructor in one of several ways:

1. The compiler implicitly creates a default constructor in every class that does no#
have any user-defined constructors. The default constructor does 7o¢ initialize the
class’s data members, but does call the default constructor for each data member
that’s an object of another class. An uninitialized variable contains an undefined
(“garbage”) value.

2. You explicitly define a constructor that takes no arguments. Such a default con-
structor will call the default constructor for each data member that’s an object of
another class and will perform additional initialization specified by you.

3. Ifyou define any constructors with arguments, C++ will not implicitly create a defauls
constructor for that class. We'll show later that C++11 allows you to force the com-
piler to create the default constructor even if you've defined non-default con-
structors.

For each version of class GradeBook in Fig. 3.1, Fig. 3.3 and Fig. 3.5 the compiler implic-
itly defined a default constructor.

== Error-Prevention Tip 3.2

' Unless no initialization of your class’s data members is necessary (almost never), provide
constructors to ensure that your class’s data members are initialized with meaningful val-
ues when each new object of your class is created.

-
-

3.6 Placing a Class in a Separate File for Reusability 83

b Software Engineering Observation 3.2
Data members can be initialized in a constructor, or their values may be set later after
the object is created. However, it’s a good software engineering practice to ensure that an
object is fully initialized before the client code invokes the object’s member functions. You
should not rely on the client code to ensure that an object gets initialized properly.

Adding the Constructor to Class GradeBook’s UML Class Diagram

The UML class diagram of Fig. 3.8 models the GradeBook class of Fig. 3.7, which has a
constructor with a name parameter of type string (represented by type String in the
UML). Like operations, the UML models constructors in the third compartment of a class
in a class diagram. To distinguish a constructor from a class’s operations, the UML places
the word “constructor” between guillemets (« and ») before the constructor’s name. By con-
vention, you list the class’s constructor before other operations in the third compartment.

Fig. 3.8 | UML class diagram indicating that class GradeBook has a constructor with a name
parameter of UML type String.

3.6 Placing a Class in a Separate File for Reusability

One of the benefits of creating class definitions is that, when packaged properly, your
classes can be reused by other programmers. For example, you can reuse C++ Standard Li-
brary type string in any C++ program by including the header <string> (and, as you’ll
see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from
Fig. 3.7 in another program. As you learned in Chapter 2, function main begins the exe-
cution of every program, and every program must have exactly one main function. If other
programmers include the code from Fig. 3.7, they get extra “baggage”—our main func-
tion—and their programs will then have two main functions. Attempting to compile a
program with two main functions produces an error. So, placing main in the same file with
a class definition prevents that class from being reused by other programs. In this section, we
demonstrate how to make class GradeBook reusable by separating it into another file from
the main function.

Headers

Each of the previous examples in the chapter consists of a single . cpp file, also known as a
source-code file, that contains a GradeBook class definition and a main function. When
building an object-oriented C++ program, it’s customary to define reusable source code
(such as a class) in a file that by convention has a . h filename extension—known as a head-
er. Programs use #include preprocessing directives to include headers and take advantage

84 Chapter 3 Introduction to Classes, Objects and Strings

of reusable software components, such as type string provided in the C++ Standard Li-
brary and user-defined types like class GradeBook.

Our next example separates the code from Fig. 3.7 into two files—GradeBook.h
(Fig. 3.9) and fig03_10.cpp (Fig. 3.10). As you look at the header in Fig. 3.9, notice that
it contains only the GradeBook class definition (lines 7-38) and the headers on which the
class depends. The main function that uses class GradeBook is defined in the source-code
file f1g03_10.cpp (Fig. 3.10) in lines 8-18. To help you prepare for the larger programs
you'll encounter later in this book and in industry, we often use a separate source-code file
containing function main to test our classes (this is called a driver program). You'll soon
learn how a source-code file with main can use the class definition found in a header to
create objects of a class.

1 // Fig. 3.9: GradeBook.h

2 // GradeBook class definition in a separate file from main.

3 #include <iostream>

4 #include <string> // class GradeBook uses C++ standard string class
5

6 // GradeBook class definition

7 class GradeBook

8 {

9 public:

10 // constructor initializes courseName with string supplied as argument
11 explicit GradeBook(std::string name)

12 : courseName(name) // member initializer to initialize courseName
13 {

14 // empty body

15 } // end GradeBook constructor

16

17 // function to set the course name

18 void setCourseName(std::string name)

19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22
23 // function to get the course name
24 std::string getCourseName() const
25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName
28
29 // display a welcome message to the GradeBook user
30 void displayMessage() const
31 {
32 // call getCourseName to get the courseName
33 std::cout << "Welcome to the grade book for\n" << getCourseName()
34 << """ << std::endl;
35 } // end function displayMessage
36 private:
37 std::string courseName; // course name for this GradeBook

38 }; // end class GradeBook

Fig. 3.9 | GradeBook class definition in a separate file from main.

3.6 Placing a Class in a Separate File for Reusability 85

1 // Fig. 3.10: fig03_10.cpp

2 // Including class GradeBook from file GradeBook.h for use in main.

3 #include <iostream>

4 #include // include definition of class GradeBook

5 using namespace std;

6

7 // function main begins program execution

8 1int main(Q)

9 {

10 // create two GradeBook objects

11 GradeBook gradeBookl()

12 GradeBook gradeBook?2 ()

13

14 // display initial value of courseName for each GradeBook

15 cout << << gradeBookl.getCourseName()
16 << << gradeBook2.getCourseName()
17 << endl;

18 } // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.10 | Including class GradeBook from file GradeBook . h for use in main.

Use std: : with Standard Library Components in Headers

Throughout the header (Fig. 3.9), we use std: : when referring to string (lines 11, 18, 24
and 37), cout (line 33) and end1 (line 34). For subtle reasons that we'll explain in a later
chapter, headers should never contain using directives or using declarations (Section 2.7).

Including a Header That Contains a User-Defined Class

A header such as GradeBook. h (Fig. 3.9) cannot be used as a complete program, because
it does not contain a main function. To test class GradeBook (defined in Fig. 3.9), you
must write a separate source-code file containing a main function (such as Fig. 3.10) that
instantiates and uses objects of the class.

The compiler doesn’t know what a GradeBook is because it’s a user-defined type. In
fact, the compiler doesn’t even know the classes in the C++ Standard Library. To help it
understand how to use a class, we must explicitly provide the compiler with the class’s def-
inition—that’s why, for example, to use type string, a program must include the
<string> header. This enables the compiler to determine the amount of memory that it
must reserve for each string object and ensure that a program calls a string’s member
functions correctly.

To create GradeBook objects gradeBook1 and gradeBook2 in lines 11-12 of Fig. 3.10,
the compiler must know the size of a GradeBook object. While objects conceptually con-
tain data members and member functions, C++ objects actually contain only data. The
compiler creates only one copy of the class’s member functions and shares that copy among
all the class’s objects. Each object, of course, needs its own data members, because their
contents can vary among objects (such as two different BankAccount objects having two
different balances). The member-function code, however, is nor modifiable, so it can be
shared among all objects of the class. Therefore, the size of an object depends on the

86 Chapter 3 Introduction to Classes, Objects and Strings

amount of memory required to store the class’s data members. By including GradeBook. h
in line 4, we give the compiler access to the information it needs (Fig. 3.9, line 37) to
determine the size of a GradeBook object and to determine whether objects of the class are
used correctly (in lines 11-12 and 15-16 of Fig. 3.10).

Line 4 instructs the C++ preprocessor to replace the directive with a copy of the con-
tents of GradeBook.. h (i.c., the GradeBook class definition) before the program is compiled.
When the source-code file fig03_10. cpp is compiled, it now contains the GradeBook class
definition (because of the #include), and the compiler is able to determine how to create
GradeBook objects and see that their member functions are called correctly. Now that the
class definition is in a header (without a main function), we can include that header in any
program that needs to reuse our GradeBook class.

How Headers Are Located

Notice that the name of the GradeBook. h header in line 4 of Fig. 3.10 is enclosed in quotes
(" ") rather than angle brackets (< >). Normally, a program’s source-code files and user-
defined headers are placed in the same directory. When the preprocessor encounters a
header name in quotes, it attempts to locate the header in the same directory as the file in
which the #include directive appears. If the preprocessor cannot find the header in that
directory, it searches for it in the same location(s) as the C++ Standard Library headers.
When the preprocessor encounters a header name in angle brackets (e.g., <iostreams), it
assumes that the header is part of the C++ Standard Library and does 7oz look in the di-
rectory of the program that’s being preprocessed.

== Error-Prevention Tip 3.3

g' To ensure that the preprocessor can locate headers correctly, #include preprocessing direc-
. tives should place user-defined headers names in quotes (e.g., "GradeBook.h") and place
C++ Standard Library headers names in angle brackets (e.g., <iostreams).

Additional Software Engineering Issues

Now that class GradeBook is defined in a header, the class is reusable. Unfortunately, plac-
ing a class definition in a header as in Fig. 3.9 still reveals the entire implementation of the
class to the classs clients—GradeBook . h is simply a text file that anyone can open and read.
Conventional software engineering wisdom says that to use an object of a class, the client
code needs to know only what member functions to call, what arguments to provide to
each member function and what return type to expect from each member function. 7he
client code does not need to know how those functions are implemented.

If client code does know how a class is implemented, the programmer might write
client code based on the class’s implementation details. Ideally, if that implementation
changes, the class’s clients should not have to change. Hiding the classs implementation
details makes it easier to change the classs implementation while minimizing, and hopefully
eliminating, changes to client code.

In Section 3.7, we show how to break up the GradeBook class into two files so that

1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to
call them and what return types to expect, and

3. the clients do 7ot know how the class’s member functions are implemented.

3.7 Separating Interface from Implementation 87

3.7 Separating Interface from Implementation

In the preceding section, we showed how to promote software reusability by separating a
class definition from the client code (e.g., function main) that uses the class. We now in-
troduce another fundamental principle of good software engineering—separating inter-
face from implementation.

Interface of a Class

Interfaces define and standardize the ways in which things such as people and systems in-
teract with one another. For example, a radio’s controls serve as an interface between the
radio’s users and its internal components. The controls allow users to perform a limited
set of operations (such as changing the station, adjusting the volume, and choosing be-
tween AM and FM stations). Various radios may implement these operations different-
ly—some provide push buttons, some provide dials and some support voice commands.
The interface specifies what operations a radio permits users to perform but does not spec-
ify how the operations are implemented inside the radio.

Similarly, the interface of a class describes what services a class’s clients can use and
how to request those services, but not how the class carries out the services. A class’s pubTic
interface consists of the class’s pub1ic member functions (also known as the class’s pub1ic
services). For example, class GradeBook’s interface (Fig. 3.9) contains a constructor and
member functions setCourseName, getCourseName and displayMessage. GradeBook’s
clients (e.g., main in Fig. 3.10) use these functions to request the class’s services. As you’ll
soon see, you can specify a class’s interface by writing a class definition that lists only the
member-function names, return types and parameter types.

Separating the Interface from the Implementation

In our prior examples, each class definition contained the complete definitions of the
class’s pub1ic member functions and the declarations of its private data members. How-
ever, it’s better software engineering to define member functions outside the class defini-
tion, so that their implementation details can be hidden from the client code. This practice
ensures that you do not write client code that depends on the class’s implementation de-
tails.

The program of Figs. 3.11-3.13 separates class GradeBook’s interface from its imple-
mentation by splitting the class definition of Fig. 3.9 into two files—the header Grade-
Book.h (Fig.3.11) in which class GradeBook is defined, and the source-code file
GradeBook. cpp (Fig. 3.12) in which GradeBook’s member functions are defined. By con-
vention, member-function definitions are placed in a source-code file of the same base
name (e.g., GradeBook) as the class’s header but with a .cpp filename extension. The
source-code file fig03_13.cpp (Fig. 3.13) defines function main (the client code). The
code and outpurt of Fig. 3.13 are identical to that of Fig. 3.10. Figure 3.14 shows how this
three-file program is compiled from the perspectives of the GradeBook class programmer
and the client-code programmer—we’ll explain this figure in detail.

GradeBook. h: Defining a Class’s Interface with Function Prototypes

Header GradeBook. h (Fig. 3.11) contains another version of GradeBook’s class definition
(lines 8-17). This version is similar to the one in Fig. 3.9, but the function definitions in
Fig. 3.9 are replaced here with function prototypes (lines 11-14) that describe the classs

88 Chapter 3 Introduction to Classes, Objects and Strings

public interface without revealing the classs member-function implementations. A function
prototype is a declaration of a function that tells the compiler the function’s name, its re-
turn type and the types of its parameters. Also, the header still specifies the class’s private
data member (line 16) as well. Again, the compiler must know the data members of the
class to determine how much memory to reserve for each object of the class. Including the
header GradeBook. h in the client code (line 5 of Fig. 3.13) provides the compiler with the
information it needs to ensure that the client code calls the member functions of class
GradeBook correctly.

1 // Fig. 3.11: GradeBook.h

2 // GradeBook class definition. This file presents GradeBook's public

3 // interface without revealing the implementations of GradeBook's member
4 // functions, which are defined in GradeBook.cpp.

5 #include <string> // class GradeBook uses C++ standard string class

6

7 // GradeBook class definition

8 class GradeBook

9 {

10 public:

11 explicit GradeBook(std::string); // constructor initialize courseName
12 void setCourseName(std::string); // sets the course name

13 std::string getCourseName() const; // gets the course name

14 void displayMessage() const; // displays a welcome message

15 private:

16 std::string courseName; // course name for this GradeBook

17 }; // end class GradeBook

Fig. 3.11 | GradeBook class definition containing function prototypes that specify the interface
of the class.

The function prototype in line 11 (Fig. 3.11) indicates that the constructor requires
one string parameter. Recall that constructors don’t have return types, so no return type
appears in the function prototype. Member function setCourseName’s function prototype
indicates that setCourseName requires a string parameter and does not return a value
(i.e., its return type is void). Member function getCourseName’s function prototype indi-
cates that the function does not require parameters and returns a string. Finally, member
function displayMessage’s function prototype (line 14) specifies that displayMessage
does not require parameters and does not return a value. These function prototypes are the
same as the first lines of the corresponding function definitions in Fig. 3.9, except that the
parameter names (which are oprional in prototypes) are not included and each function
prototype must end with a semicolon.

\ Although parameter names in function prototypes are optional (they're ignored by the
compiler), many programmers use these names for documentation purposes.

--3-!".. Good Programming Practice 3.2

GradeBook . cpp: Defining Member Functions in a Separate Source-Code File
Source-code file GradeBook. cpp (Fig. 3.12) defines class GradeBook’s member functions,
which were declared in lines 11-14 of Fig. 3.11. The definitions appear in lines 9-33 and

3.7 Separating Interface from Implementation 89

are nearly identical to the member-function definitions in lines 11-35 of Fig. 3.9. Note
that the const keyword must appear in both the function prototypes (Fig. 3.11, lines13—
14) and the function definitions for functions getCourseName and displayMessage (lines
22 and 28).

1 // Fig. 3.12: GradeBook.cpp

2 // GradeBook member-function definitions. This file contains

3 // implementations of the member functions prototyped in GradeBook.h.
4 #include <iostream>

5 #include "GradeBook.h" // include definition of class GradeBook

6 using namespace std;

7

8 // constructor initializes courseName with string supplied as argument
9 GradeBook: :GradeBook(string name)

10 : courseName(name) // member initializer to initialize courseName
11 {

12 // empty body

13 } // end GradeBook constructor

14

15 // function to set the course name
16 void GradeBook: :setCourseName(string name)

17 {

18 courseName = name; // store the course name in the object
19 1} // end function setCourseName

20

21 // function to get the course name
22 string GradeBook: :getCourseName() const

23 {

24 return courseName; // return object's courseName
25 } // end function getCourseName

26

27 // display a welcome message to the GradeBook user
28 void GradeBook: :displayMessage() const

29

30 // call getCourseName to get the courseName

31 cout << "Welcome to the grade book for\n" << getCourseName()
32 << """ << endl;

33 1} // end function displayMessage

Fig. 3.12 | GradeBook member-function definitions represent the implementation of class
GradeBook.

Each member-function name (lines 9, 16, 22 and 28) is preceded by the class name and
: 1, which is known as the scope resolution operator. This “ties” each member function to
the (now separate) GradeBook class definition (Fig. 3.11), which declares the class’s member
functions and data members. Without “GradeBook: : 7 preceding each function name, these
functions would 7oz be recognized by the compiler as member functions of class Grade-
Book—the compiler would consider them “free” or “loose” functions, like main. These are
also called global functions. Such functions cannot access GradeBook’s private data or call
the class’s member functions, without specifying an object. So, the compiler would 7oz be
able to compile these functions. For example, lines 18 and 24 in Fig. 3.12 that access variable
courseName would cause compilation errors because courseName is not declared as a local

90 Chapter 3 Introduction to Classes, Objects and Strings

variable in each function—the compiler would not know that courseName is already
declared as a data member of class GradeBook.

s Common Programming Error 3.3
- When defining a class’s member functions outside that class, omitting the class name and

s scope resolution operator (::) preceding the function names causes errors.

To indicate that the member functions in GradeBook . cpp are part of class GradeBook,
we must first include the GradeBook. h header (line 5 of Fig. 3.12). This allows us to access
the class name GradeBook in the GradeBook.cpp file. When compiling GradeBook. cpp,
the compiler uses the information in GradeBook. h to ensure that

1. the first line of each member function (lines 9, 16, 22 and 28) matches its proto-
type in the GradeBook. h file—for example, the compiler ensures that getCourse-
Name accepts no parameters and returns a string, and that

2. each member function knows about the class’s data members and other member
functions—for example, lines 18 and 24 can access variable courseName because
it’s declared in GradeBook . h as a data member of class GradeBook, and line 31 can
call function getCourseName, because it’s declared as a member function of the
class in GradeBook. h (and because the call conforms with the corresponding pro-

totype).

Testing Class GradeBook

Figure 3.13 performs the same GradeBook object manipulations as Fig. 3.10. Separating
GradeBook’s interface from the implementation of its member functions does 7oz affect the
way that this client code uses the class. It affects only how the program is compiled and
linked, which we discuss in detail shortly.

1 // Fig. 3.13: fig03_13.cpp

2 // GradeBook class demonstration after separating

3 // its interface from its implementation.

4 #include <iostream>

5 #include // include definition of class GradeBook

6 using namespace std;

7

8 // function main begins program execution

9 int main()

10 {

11 // create two GradeBook objects

12 GradeBook gradeBookl1();

13 GradeBook gradeBook2 ();

14

15 // display initial value of courseName for each GradeBook

16 cout << << gradeBookl.getCourseName()
17 << << gradeBook?2.getCourseName()
18 << endl;

19 } // end main

Fig. 3.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part | of 2.)

3.7 Separating Interface from Implementation 91

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.13 | GradeBook class demonstration after separating its interface from its
implementation. (Part 2 of 2.)

As in Fig. 3.10, line 5 of Fig. 3.13 includes the GradeBook . h header so that the com-
piler can ensure that GradeBook objects are created and manipulated correctly in the client
code. Before executing this program, the source-code files in Fig. 3.12 and Fig. 3.13 must
both be compiled, then linked together—that is, the member-function calls in the client
code need to be tied to the implementations of the class’s member functions—a job per-
formed by the linker.

The Compilation and Linking Process

The diagram in Fig. 3.14 shows the compilation and linking process that results in an ex-
ecutable GradeBook application that can be used by instructors. Often a class’s interface
and implementation will be created and compiled by one programmer and used by a sep-
arate programmer who implements the client code that uses the class. So, the diagram
shows what’s required by both the class-implementation programmer and the client-code
programmer. The dashed lines in the diagram show the pieces required by the class-imple-
mentation programmer, the client-code programmer and the GradeBook application user,
respectively. [Note: Figure 3.14 is nora UML diagram.]

A class-implementation programmer responsible for creating a reusable GradeBook
class creates the header GradeBook.h and the source-code file GradeBook.cpp that
#includes the header, then compiles the source-code file to create GradeBook’s object
code. To hide the class’s member-function implementation details, the class-implementa-
tion programmer would provide the client-code programmer with the header Grade-
Book.h (which specifies the class’s interface and data members) and the GradeBook object
code (i.e., the machine code instructions that represent GradeBook’s member functions).
The client-code programmer is 7o given GradeBook. cpp, so the client remains unaware
of how GradeBook’s member functions are implemented.

The client code programmer needs to know only GradeBook’s interface to use the class
and must be able to link its object code. Since the interface of the class is part of the class
definition in the GradeBook.h header, the client-code programmer must have access to
this file and must #include it in the client’s source-code file. When the client code is com-
piled, the compiler uses the class definition in GradeBook. h to ensure that the main func-
tion creates and manipulates objects of class GradeBook correctly.

To create the executable GradeBook application, the last step is to link

1. the object code for the main function (i.e., the client code),
2. the object code for class GradeBook’s member-function implementations and

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by
the class-implementation programmer and the client-code programmer.

The linker’s output is the executable GradeBook application that instructors can use to
manage their students’ grades. Compilers and IDEs typically invoke the linker for you af-
ter compiling your code.

92 Chapter 3 Introduction to Classes, Objects and Strings

class definition/interface (client source code)

implementation file

, , < <
AY
I
I
I
I
I
I
I
I
. I .
Class Implementation | Client Code
I
Programmer X Programmer
I
I
: main function
I
I
I
U

GradeBook class's
object code

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
| GradeBook . cpp | GradeBook.h
! 1
! 1
! 1
! 1
! |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

main function's
object code

C++ Standard Library
object code

e e e e e e e e e -

1 \
: GradeBook l'
\ executable application |
\ 1
\ !

\ GradeBook ,
N Application User

Fig. 3.14 | Compilation and linking process that produces an executable application.

For further information on compiling multiple-source-file programs, see your com-
piler’s documentation. We provide links to various C++ compilers in our C++ Resource
Center at waw.deitel.com/cplusplus/.

3.8 Validating Data with set Functions

In Section 3.4, we introduced sez functions for allowing clients of a class to modify the val-
ue of a private data member. In Fig. 3.5, class GradeBook defines member function set-
CourseName to simply assign a value received in its parameter name to data member
courseName. This member function does not ensure that the course name adheres to any
particular format or follows any other rules regarding what a “valid” course name looks

www.deitel.com/cplusplus/

3.8 Validating Data with set Functions 93

like. Suppose that a university can print student transcripts containing course names of
only 25 characters or less. If the university uses a system containing GradeBook objects to
generate the transcripts, we might want class GradeBook to ensure that its data member
courseName never contains more than 25 characters. The program of Figs. 3.15-3.17 en-
hances class GradeBook’s member function setCourseName to perform this validation (al-

so known as validity checking).

GradeBook Class Definition

GradeBook’s class definition (Fig. 3.15)—and hence, its interface—is identical to that of
Fig. 3.11. Since the interface remains unchanged, clients of this class need not be changed
when the definition of member function setCourseName is modified. This enables clients
to take advantage of the improved GradeBook class simply by linking the client code to the
updated GradeBook’s object code.

1 // Fig. 3.15: GradeBook.h

2 // GradeBook class definition presents the public interface of

3 // the class. Member-function definitions appear in GradeBook.cpp.
4 #include <string> // program uses C++ standard string class

5

6 // GradeBook class definition

7 class GradeBook

8 {

9 public:

10 explicit GradeBook(std::string); // constructor initialize courseName
11 void setCourseName(std::string); // sets the course name

12 std::string getCourseName() const; // gets the course name

13 void displayMessage() const; // displays a welcome message

14 private:

15 std::string courseName; // course name for this GradeBook

16 }; // end class GradeBook

Fig. 3.15 | GradeBook class definition presents the public interface of the class.

Validating the Course Name with GradeBook Member Function setCourseName
The changes to class GradeBook are in the definitions of the constructor (Fig. 3.16, lines
9—12) and setCourseName (lines 16-29). Rather than using a member initializer, the con-
structor now calls setCourseName. In general, #// data members should be initialized with
member initializers. However, sometimes a constructor must also validare its argu-
ment(s)—often, this is handled in the constructor’s body (line 11). The call to setCourse-
Name wvalidates the constructor’s argument and sezs the data member courseName. Initially,
courseName’s value will be set to the empty string before the constructor’s body executes,
then setCourseName will modify courseName’s value.

In setCourseName, the if statement in lines 18-19 determines whether parameter
name contains a valid course name (i.e., a string of 25 or fewer characters). If the course
name is valid, line 19 stores it in data member courseName. Note the expression
name.size() in line 18. This is a member-function call just like myGradeBook.display-
Message(). The C++ Standard Library’s string class defines a member function size that
returns the number of characters in a string object. Parameter name is a string object, so

94 Chapter 3 Introduction to Classes, Objects and Strings

the call name.size() returns the number of characters in name. If this value is less than or
equal to 25, name is valid and line 19 executes.

1 // Fig. 3.16: GradeBook.cpp

2 // Implementations of the GradeBook member-function definitions.

3 // The setCourseName function performs validation.

4 #include <iostream>

5 #include "GradeBook.h" // include definition of class GradeBook

6 using namespace std;

7

8 // constructor initializes courseName with string supplied as argument
9 GradeBook: :GradeBook(string name)

10 {

11 setCourseName(name); // validate and store courseName
12 } // end GradeBook constructor

13

14 // function that sets the course name;

15 // ensures that the course name has at most 25 characters
16 void GradeBook: :setCourseName(string name)

17 {

18 if (name.size() <= 25) // if name has 25 or fewer characters

19 courseName = name; // store the course name in the object

20

21 if (name.size() > 25) // if name has more than 25 characters

22 {

23 // set courseName to first 25 characters of parameter name

24 courseName = name.substr(0, 25); // start at 0, length of 25
25

26 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
27 << "Limiting courseName to first 25 characters.\n" << endl;
28 } // end if

29 } // end function setCourseName

30

31 // function to get the course name
32 string GradeBook::getCourseName() const

33 {

34 return courseName; // return object's courseName
35 1} // end function getCourseName

36

37 // display a welcome message to the GradeBook user
38 void GradeBook: :displayMessage() const

39

40 // call getCourseName to get the courseName

41 cout << "Welcome to the grade book for\n" << getCourseName()
42 << "1 << endl;

43 } // end function displayMessage

Fig. 3.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName.

The 1 f statement in lines 21-28 handles the case in which setCourseName receives an
invalid course name (i.e., a name that is more than 25 characters long). Even if parameter
name is too long, we still want to leave the GradeBook object in a consistent state—that s,

3.8 Validating Data with set Functions 95

a state in which the object’s data member courseName contains a valid value (i.e., a string
of 25 characters or less). Thus, we truncate the specified course name and assign the first
25 characters of name to the courseName data member (unfortunately, this could truncate
the course name awkwardly). Standard class string provides member function substr
(short for “substring”) that returns a new string object created by copying part of an
existing string object. The call in line 24 (i.e., name.substr(0, 25)) passes two integers
(0 and 25) to name’s member function substr. These arguments indicate the portion of
the string name that substr should return. The first argument specifies the starting position
in the original string from which characters are copied—the first character in every string
is considered to be at position 0. The second argument specifies the number of characters
to copy. Therefore, the call in line 24 returns a 25-character substring of name starting at
position O (that is, the first 25 characters in name). For example, if name holds the value
"CS101 Introduction to Programming in C++", substr returns "CS101 Introduction to
Pro". After the call to substr, line 24 assigns the substring returned by substr to data
member courseName. In this way, setCourseName ensures that courseName is always
assigned a string containing 25 or fewer characters. If the member function has to truncate
the course name to make it valid, lines 26-27 display a warning message using cerr, as
mentioned in Chapter 1.

The if statement in lines 21-28 contains two body statements—one to set the
courseName to the first 25 characters of parameter name and one to print an accompanying
message to the user. Both statements should execute when name is too long, so we place
them in a pair of braces, { }. Recall from Chapter 2 that this creates a block. You’ll learn
more about placing multiple statements in a control statement’s body in Chapter 4.

The statement in lines 26-27 could also appear without a stream insertion operator
at the start of the second line of the statement, as in:

cerr << << hame <<
<< endl;

The C++ compiler combines adjacent string literals, even if they appear on separate lines of a
program. Thus, in the statement above, the C++ compiler would combine the string literals
"\" exceeds maximum length (25).\n" and "Limiting courseName to first 25 charac-
ters.\n" into a single string literal that produces output identical to that of lines 26-27
in Fig. 3.16. This behavior allows you to print lengthy strings by breaking them across

lines in your program without including additional stream insertion operations.

Testing Class GradeBook

Figure 3.17 demonstrates the modified version of class GradeBook (Figs. 3.15-3.16) fea-
turing validation. Line 12 creates a GradeBook object named gradeBookl. Recall that the
GradeBook constructor calls setCourseName to initialize data member courseName. In pre-
vious versions of the class, the benefit of calling setCourseName in the constructor was not
evident. Now, however, the constructor takes advantage of the validation provided by set-
CourseName. The constructor simply calls setCourseName, rather than duplicating its vali-
dation code. When line 12 of Fig. 3.17 passes an initial course name of "CS101
Introduction to Programming in C++" to the GradeBook constructor, the constructor
passes this value to setCourseName, where the actual initialization occurs. Because this
course name contains more than 25 characters, the body of the second if statement exe-

96 Chapter 3 Introduction to Classes, Objects and Strings

cutes, causing courseName to be initialized to the truncated 25-character course name
"CS101 Introduction to Pro" (the truncated part is highlighted in line 12). The output
in Fig. 3.17 contains the warning message output by lines 26-27 of Fig. 3.16 in member
function setCourseName. Line 13 creates another GradeBook object called gradeBook2—
the valid course name passed to the constructor is exactly 25 characters.

1 // Fig. 3.17: fig03_17.cpp

2 // Create and manipulate a GradeBook object; illustrate validation.
3 #include <iostream>

4 #include "GradeBook.h" // include definition of class GradeBook

5 using namespace std;

6

7 // function main begins program execution

8 1int main()

9 {

10 // create two GradeBook objects;

11 // initial course name of gradeBookl is too long

12 GradeBook gradeBookl("CS101 Introduction to Programming in C++");
13 GradeBook gradeBook2("CS102 C++ Data Structures”);

14

15 // display each GradeBook's courseName

16 cout << "gradeBookl's 1initial course name is: "

17 << gradeBookl.getCourseName()

18 << "\ngradeBook2's 1initial course name is: "

19 << gradeBook2.getCourseName() << endl;
20
21 // modify gradeBookl's courseName (with a valid-Tength string)
22 gradeBookl.setCourseName("CS101 Ci+ Programming');
23
24 // display each GradeBook's courseName
25 cout << "\ngradeBookl's course name is: "
26 << gradeBookl.getCourseName()
27 << "\ngradeBook2's course name is: "
28 << gradeBook2.getCourseName() << endl;

29 } // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum length (25).
Limiting courseName to first 25 characters.

gradeBookl's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBookl's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course name is limited
to 25 characters in length.

Lines 16-19 of Fig. 3.17 display the truncated course name for gradeBook1 (we high-
light this in blue in the program output) and the course name for gradeBook2. Line 22
calls gradeBook1’s setCourseName member function directly, to change the course name

3.9 Wrap-Up 97

in the GradeBook object to a shorter name that does not need to be truncated. Then, lines
25-28 output the course names for the GradeBook objects again.

Additional Notes on Set Functions

A public ser function such as setCourseName should carefully scrutinize any attempt to
modify the value of a data member (e.g., courseName) to ensure that the new value is ap-
propriate for that data item. For example, an attempt to ser the day of the month to 37
should be rejected, an attempt to ser a person’s weight to zero or a negative value should
be rejected, an attempt to ser a grade on an exam to 185 (when the proper range is zero to
100) should be rejected, and so on.

%4+ Software Engineering Observation 3.3
: Making data members private and controlling access, especially write access, to those
58 data members through public member functions helps ensure data integrity.

2= Error-Prevention Tip 3.4
" The benefits of data integrity are not automatic simply because data members are made
private—jyou must provide appropriate validity checking and report the errors.

A set function could return a value indicating that an attempt was made to assign
invalid data to an object of the class. A client could then test the return value of the sez
function to determine whether the attempt to modify the object was successful and to take
appropriate action if not. We will do that in later chapters after we introduce a bit more
programming technology. In C++, clients of objects also can be notified of problems via
the exception-handling mechanism, which we begin discussing in Chapter 7 and present in-
depth in Chapter 17.

3.9 Wrap-Up

In this chapter, you created user-defined classes, and created and used objects of those
classes. We declared data members of a class to maintain data for each object of the class.
We also defined member functions that operate on that data. You learned that member
functions that do not modify a class’s data should be declared const. We showed how to
call an object’s member functions to request the services the object provides and how to
pass data to those member functions as arguments. We discussed the difference between a
local variable of a member function and a data member of a class. We also showed how to
use a constructor and a member-initializer list to ensure that every object is initialized
properly. You learned that a single-parameter constructor should be declared explicit,
and that a constructor cannot be declared const because it modifies the object being ini-
tialized. We demonstrated how to separate the interface of a class from its implementation
to promote good software engineering. You learned that using directives and using dec-
larations should never be placed in headers. We presented a diagram that shows the files
that class-implementation programmers and client-code programmers need to compile the
code they write. We demonstrated how sez functions can be used to validate an object’s
data and ensure that objects are maintained in a consistent state. UML class diagrams were
used to model classes and their constructors, member functions and data members. In the
next chapter, we begin our introduction to control statements, which specify the order in
which a function’s actions are performed.

98 Chapter 3 Introduction to Classes, Objects and Strings

Summary
Section 3.2 Defining a Class with a Member Function

* A class definition (p. 68) contains the data members and member functions that define the class’s
attributes and behaviors, respectively.

¢ A class definition begins with the keyword c1ass followed immediately by the class name.

* By convention, the name of a user-defined class (p. 69) begins with a capital letter and, for read-
ability, each subsequent word in the class name begins with a capital letter.

e Every class’s body (p. 68) is enclosed in a pair of braces ({ and }) and ends with a semicolon.

* Member functions that appear after access specifier public (p. 68) can be called by other func-
tions in a program and by member functions of other classes.

e Access specifiers are always followed by a colon ().

e Keyword void (p. 69) is a special return type which indicates that a function will perform a task
but will not return any data to its calling function when it completes its task.

* By convention, function names (p. 69) begin with a lowercase first letter and all subsequent
words in the name begin with a capital letter.

e An empty set of parentheses after a function name indicates that the function does not require
additional data to perform its task.

* A function that does not, and should not, modify the object on which it’s called should be de-
clared const.

* Typically, you cannot call a member function until you create an object of its class.

¢ Each new class you create becomes a new type in C++.

¢ In the UML, each class is modeled in a class diagram (p. 70) as a rectangle with three compart-
ments, which (top to bottom) contain the class’s name, attributes and operations, respectively.

e The UML models operations as the operation name followed by parentheses. A plus sign (+) pre-
ceding the name indicates a public operation (i.c., a public member function in C++).

Section 3.3 Defining a Member Function with a Parameter
* A member function can require one or more parameters (p. 70) that represent additional data it
needs to perform its task. A function call supplies an argument (p. 71) for each function parameter.

* A member function is called by following the object name with a dot (.) operator (p. 70), the
function name and a set of parentheses containing the function’s arguments.

e A variable of C++ Standard Library class string (p. 72) represents a string of characters. This
class is defined in header <string>, and the name string belongs to namespace std.

* Function getline (from header <string>, p. 72) reads characters from its first argument until a
newline character is encountered, then places the characters (not including the newline) in the
string variable specified as its second argument. The newline character is discarded.

e A parameter list (p. 73) may contain any number of parameters, including none at all (represent-
ed by empty parentheses) to indicate that a function does not require any parameters.
e The number of arguments in a function call must match the number of parameters in the pa-

rameter list of the called member function’s header. Also, the argument types in the function call
must be consistent with the types of the corresponding parameters in the function header.

e The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses following the operation name.

e The UML has its own data types. Not all the UML data types have the same names as the cor-
responding C++ types. The UML type String corresponds to the C++ type string.

Summary 99

Section 3.4 Data Members, set Member Functions and get Member Functions

Variables declared in a function’s body are local variables (p. 74) and can be used only from the
point of their declaration to the closing right brace (}) of the block in which they are declared.

A local variable must be declared before it can be used in a function. A local variable cannot be
accessed outside the function in which it’s declared.

Data members (p. 74) normally are private (p. 76). Variables or functions declared private are
accessible only to member functions of the class in which they’re declared, or to friends of the
class.

When a program creates (instantiates) an object, its private data members are encapsulated (hid-
den, p. 76) in the object and can be accessed only by member functions of the object’s class (or
by “friends” of the class, as you’ll see in Chapter 9).

When a function that specifies a return type other than void is called and completes its task, the
function returns a result to its calling function.

By default, the initial value of a string is the empty string (p. 77)—i.e., a string that does not
contain any characters. Nothing appears on the screen when an empty string is displayed.

A class often provides public member functions to allow the class’s clients to sez or get (p. 78)
private data members. The names of these member functions normally begin with sez or get.

Set and get functions allow clients of a class to indirectly access the hidden data. The client does
not know how the object performs these operations.

A class’s ser and ger functions should be used by other member functions of the class to manipu-
late the class’s private data. If the class’s data representation is changed, member functions that
access the data only via the sez and ger functions will not require modification.

A public set function should carefully scrutinize any attempt to modify the value of a data mem-
ber to ensure that the new value is appropriate for that data item.

The UML represents data members as attributes by listing the attribute name, followed by a co-
lon and the attribute type. Private attributes are preceded by a minus sign (-) in the UML.

The UML indicates the return type of an operation by placing a colon and the return type after
the parentheses following the operation name.

UML class diagrams do not specify return types for operations that do not return values.

Section 3.5 Initializing Objects with Constructors

Each class should provide one or more constructors (p. 79) to initialize an object of the class
when the object is created. A constructor must be defined with the same name as the class.

A difference between constructors and functions is that constructors cannot return values, so they
cannot specify a return type (not even void). Normally, constructors are declared public.

C++ automatically calls a constructor for each object that’s created, which helps ensure that ob-
jects are initialized properly before they’re used in a program.

A constructor with no parameters is a default constructor (p. 80). If you do not provide a con-
structor, the compiler provides a default constructor. You can also define a default constructor
explicitly. If you define any constructors for a class, C++ will not create a default constructor.

A single-parameter constructor should be declared explicit.

A constructor uses a member initializer list to initialize a class’s data members. Member initial-
izers appear between a constructor’s parameter list and the left brace that begins the constructor’s
body. The member initializer list is separated from the parameter list with a colon (;). A member
initializer consists of a data member’s variable name followed by parentheses containing the
member’s initial value. You can perform initialization in the constructor’s body, but you’ll learn

100 Chapter 3 Introduction to Classes, Objects and Strings

later in the book that it’s more efficient to do it with member initializers, and some types of data
members must be initialized this way.

* The UML models constructors as operations in a class diagram’s third compartment with the
word “constructor” between guillemets (« and ») before the constructor’s name.

Section 3.6 Placing a Class in a Separate File for Reusability

¢ Class definitions, when packaged properly, can be reused by programmers worldwide.

e It’s customary to define a class in a header (p. 83) that has a .h filename extension.

Section 3.7 Separating Interface from Implementation
e If the class’s implementation changes, the class’s clients should not be required to change.

¢ Interfaces define and standardize the ways in which things such as people and systems interact.

e A class’s pubTic interface (p. 87) describes the pub1ic member functions that are made available
to the class’s clients. The interface describes what services (p. 87) clients can use and how to 7e-
quest those services, but does not specify how the class carries out the services.

e Separating interface from implementation (p. 87) makes programs easier to modify. Changes in
the class’s implementation do not affect the client as long as the class’s interface remains un-

changed.
* You should never place using directives and using declarations in headers.

* A function prototype (p. 87) contains a function’s name, its return type and the number, types
and order of the parameters the function expects to receive.

* Once a class is defined and its member functions are declared (via function prototypes), the
member functions should be defined in a separate source-code file.

* For each member function defined outside of its corresponding class definition, the function
name must be preceded by the class name and the scope resolution operator (::, p. 89).

Section 3.8 Validating Data with set Functions
e Class string’s size member function (p. 93) returns the number of characters in a string.

e Class string’s member function substr (p. 95) returns a new string containing a copy of part
of an existing string. The first argument specifies the starting position in the original string.
The second specifies the number of characters to copy.

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) Every class definition contains the keyword followed immediately by the
class’s name.

b) A class definition is typically stored in a file with the filename extension.

¢) Each parameter in a function header specifies both a(n) and a(n)

d) When each object of a class maintains its own version of an attribute, the variable that
represents the attribute is also known as a(n)

e) Keyword public is a(n)

f) Return type indicates that a function will perform a task but will not return
any information when it completes its task.

g) Function from the <string> library reads characters until a newline character
is encountered, then copies those characters into the specified string.

h) When a member function is defined outside the class definition, the function header
must include the class name and the , followed by the function name to “tie”
the member function to the class definition.

Answers to Self-Review Exercises 101

i) The source-code file and any other files that use a class can include the class’s header via
a(n) preprocessing directive.

3.2 State whether each of the following is zrue or false. If false, explain why.

a) By convention, function names begin with a capital letter and all subsequent words in
the name begin with a capital letter.

b) Empty parentheses following a function name in a function prototype indicate that the
function does not require any parameters to perform its task.

¢) Data members or member functions declared with access specifier private are accessi-
ble to member functions of the class in which they’re declared.

d) Variables declared in the body of a particular member function are known as data mem-
bers and can be used in all member functions of the class.

¢) Every function’s body is delimited by left and right braces ({ and }).

f) Any source-code file that contains int main() can be used to execute a program.

g) The types of arguments in a function call must be consistent with the types of the cor-
responding parameters in the function prototype’s parameter list.

3.3 What is the difference between a local variable and a data member?

3.4 Explain the purpose of a function parameter. What's the difference between a parameter
and an argument?

Answers to Self-Review Exercises

3.1 a) class. b) .h. ¢) type, name. d) data member. e) access specifier. f) void. g) getline.
h) scope resolution operator (::). i) #include.

3.2 a) False. Function names begin with a lowercase letter and all subsequent words in the
name begin with a capital letter. b) True. ¢) True. d) False. Such variables are local variables and can
be used only in the member function in which they’re declared. ¢) True. f) True. g) True.

3.3 Alocal variable is declared in the body of a function and can be used only from its declara-
tion to the closing brace of the block in which it’s declared. A data member is declared in a class,
but not in the body of any of the class’s member functions. Every object of a class has each of the
class’s data members. Data members are accessible to all member functions of the class.

3.4 A parameter represents additional information that a function requires to perform its task.
Each parameter required by a function is specified in the function header. An argument is the value
supplied in the function call. When the function is called, the argument value is passed into the
function parameter so that the function can perform its task.

Exercises

3.5 (Function Prototypes and Definitions) Explain the difference between a function prototype
and a function definition.

3.6 (Default Constructor) What's a default constructor? How are an object’s data members ini-
tialized if a class has only an implicitly defined default constructor?

3.7 (Data Members) Explain the purpose of a data member.

3.8 (Header and Source-Code Files) What's a header? What's a source-code file? Discuss the
purpose of each.

3.9 (Using a Class Without a using Directive) Explain how a program could use class string
without inserting a using directive.

102 Chapter 3 Introduction to Classes, Objects and Strings

3.10 (Set and Get Functions) Explain why a class might provide a sez function and a gez function
for a data member.

3.11 (Modifying Class GradeBook) Modify class GradeBook (Figs. 3.11-3.12) as follows:
a) Include a second string data member that represents the course instructor’s name.
b) Provide a sez function to change the instructor’s name and a ger function to retrieve it.
¢) Modify the constructor to specify course name and instructor name parameters.
d) Modify function displayMessage to output the welcome message and course name,
then the string "This course is presented by: " followed by the instructor’s name.

Use your modified class in a test program that demonstrates the class’s new capabilities.

3.12 (Account Class) Create an Account class that a bank might use to represent customers’” bank
accounts. Include a data member of type int to represent the account balance. [Noze: In subsequent
chapters, we'll use numbers that contain decimal points (e.g., 2.75)—called floating-point values—
to represent dollar amounts.] Provide a constructor that receives an initial balance and uses it to ini-
tialize the data member. The constructor should validate the initial balance to ensure that it’s greater
than or equal to 0. If not, set the balance to 0 and display an error message indicating that the initial
balance was invalid. Provide three member functions. Member function credit should add an
amount to the current balance. Member function debit should withdraw money from the Account
and ensure that the debit amount does not exceed the Account’s balance. If it does, the balance
should be left unchanged and the function should print a message indicating "Debit amount exceed-
ed account balance." Member function getBalance should return the current balance. Create a
program that creates two Account objects and tests the member functions of class Account.

3.13 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four data members—a part num-
ber (type string), a part description (type string), a quantity of the item being purchased (type
int) and a price per item (type int). [Voze: In subsequent chapters, we’ll use numbers that contain
decimal points (e.g., 2.75)—called floating-point values—to represent dollar amounts.] Your class
should have a constructor that initializes the four data members. A constructor that receives multiple
arguments is defined with the form:

ClassName(TypeNamel parameterNamel, TypeName2 parameterName2, ...)

Provide a ser and a ger function for each data member. In addition, provide a member function
named getInvoiceAmount that calculates the invoice amount (i.e., multiplies the quantity by the
price per item), then returns the amount as an int value. If the quantity is not positive, it should be
set to 0. If the price per item is not positive, it should be set to 0. Write a test program that demon-
strates class Invoice’s capabilities.

3.14 (Employee Class) Create a class called EmpTloyee that includes three pieces of information as
data members—a first name (type string), a last name (type string) and a monthly salary (type
int). [Vote: In subsequent chapters, we'll use numbers that contain decimal points (e.g., 2.75)—
called floating-point values—to represent dollar amounts.] Your class should have a constructor that
initializes the three data members. Provide a sez and a ger function for each data member. If the
monthly salary is not positive, set it to 0. Write a test program that demonstrates class Employee’s
capabilities. Create two EmpTloyee objects and display cach object’s yearly salary. Then give cach Em-
ployee a 10 percent raise and display each Employee’s yearly salary again.

3.15 (Date Class) Create a class called Date that includes three pieces of information as data
members—a month (type int), a day (type int) and a year (type int). Your class should have a con-
structor with three parameters that uses the parameters to initialize the three data members. For the
purpose of this exercise, assume that the values provided for the year and day are correct, but ensure
that the month value is in the range 1-12; if it isn’t, set the month to 1. Provide a sez and a get func-
tion for each data member. Provide a member function displayDate that displays the month, day

Making a Difference 103

and year separated by forward slashes (/). Write a test program that demonstrates class Date’s capa-
bilities.

Making a Difference

3.16 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see that
your heart rate stays within a safe range suggested by your trainers and doctors. According to the Amer-
ican Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736), the
formula for calculating your maximum heart rate in beats per minute is 220 minus your age in years.
Your target heart rate is a range that is 50-85% of your maximum heart rate. [Note: These formulas are
estimates provided by the AHA. Maximum and target heart rates may vary based on the health, fitness and
gender of the individual. Ahvays consult a physician or qualified health care proféssional before beginning or
modifying an exercise program.] Create a class called HeartRates. The class attributes should include the
person’s first name, last name and date of birth (consisting of separate attributes for the month, day
and year of birth). Your class should have a constructor that receives this data as parameters. For each
attribute provide sez and gez functions. The class also should include a function getAge that calculates
and returns the person’s age (in years), a function getMaxiumumHeartRate that calculates and returns
the person’s maximum heart rate and a function getTargetHeartRate that calculates and returns the
person’s target heart rate. Since you do not yet know how to obtain the current date from the comput-
er, function getAge should prompt the user to enter the current month, day and year before calculating
the person’s age. Write an application that prompts for the person’s information, instantiates an object
of class HeartRates and prints the information from that object—including the person’s first name,
last name and date of birth—then calculates and prints the person’s age in (years), maximum heart rate
and target-heart-rate range.

3.17 (Computerization of Health Records) A health care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients to share their health profiles and his-
tories among their various health care professionals. This could improve the quality of health care,
help avoid drug conflicts and erroneous drug prescriptions, reduce costs and in emergencies, could
save lives. In this exercise, you’ll design a “starter” HealthProfile class for a person. The class attri-
butes should include the person’s first name, last name, gender, date of birth (consisting of separate
attributes for the month, day and year of birth), height (in inches) and weight (in pounds). Your class
should have a constructor that receives this data. For each attribute, provide sez and get functions.
The class also should include functions that calculate and return the user’s age in years, maximum
heart rate and target-heart-rate range (see Exercise 3.16), and body mass index (BMI; see
Exercise 2.30). Write an application that prompts for the person’s information, instantiates an ob-
ject of class HealthProfile for that person and prints the information from that object—including
the person’s first name, last name, gender, date of birth, height and weight—then calculates and
prints the person’s age in years, BMI, maximum heart rate and target-heart-rate range. It should also
display the “BMI values” chart from Exercise 2.30. Use the same technique as Exercise 3.16 to cal-
culate the person’s age.

www.americanheart.org/presenter.jhtml?identifier=4736

Let’s all move one place on.
—Lewis Carroll

The wheel is come full circle.
—William Shakespeare

All the evolution we know of

proceeds from the vague to the
definite.

—Charles Sanders Peirce

Objectives
In this chapter you'll learn:

m Basic problem-solving
techniques.

m To develop algorithms
through the process of top-
down, stepwise refinement.

m Tousetheifandif...else
selection statements to
choose among alternative
actions.

m To use the while repetition
statement to execute
statements in a program
repeatedly.

m Counter-controlled repetition
and sentinel-controlled
repetition.

m To use the increment,
decrement and assignment
operators.

Control Statements: Part [;
Assignment, ++ and --
Operators

4.1 Introduction 105

4.1 Introduction 4.8 Formulating Algorithms: Counter-
4.2 Algorithms Controlled Repetition
4.3 Pseudocode 4.9 Formulating Algorithms: Sentinel-

4.4 Control Structures Controlled Repetition

4.5 if Selection Statement 4.10 Formulating Algorithms: Nested

. . Control Statements
4.6 if..else Double-Selection)
SetiarE: 4.11 Assignment Operators
4.12 Increment and Decrement Operators

4.13 Wrap-Up

4.7 while Repetition Statement

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

4.1 Introduction

Before writing a program to solve a problem, we must have a thorough understanding of
the problem and a carefully planned approach to solving it. When writing a program, we
must also understand the available building blocks and employ proven program construc-
tion techniques. In this chapter and in Chapter 5, Control Statements: Part 2; Logical Op-
erators, we discuss these issues as we present the theory and principles of structured
programming. The concepts presented here are crucial to building effective classes and ma-
nipulating objects.

In this chapter, we introduce C++’s if, if...e1se and while statements, three of the
building blocks that allow you to specify the logic required for member functions to per-
form their tasks. We devote a portion of this chapter (and Chapters 5-7) to further devel-
oping the GradeBook class. In particular, we add a member function to the GradeBook class
that uses control statements to calculate the average of a set of student grades. Another
example demonstrates additional ways to combine control statements. We introduce
C++’s assignment, increment and decrement operators. These additional operators abbre-
viate and simplify many program statements.

4.2 Algorithms

Any solvable computing problem can be solved by executing a series of actions in a specific
order. A procedure for solving a problem in terms of

1. the actions to execute and
2. the order in which the actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to
work prepared to make critical decisions. Suppose the same steps are performed in a dif-
ferent order: (1) Get out of bed, (2) take off pajamas, (3) get dressed, (4) take a shower,
(5) eat breakfast, (6) carpool to work. In this case, our junior executive shows up for work

106 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

soaking wet. Specifying the order in which statements (actions) execute is called program
control. This chapter investigates program control using C++’s control statements.

4.3 Pseudocode

Pseudocode (or “fake” code) is an artificial and informal language that helps you develop
algorithms without having to worry about the details of C++ language syntax. The pseudo-
code we present is helpful for developing algorithms that will be converted to structured
C++ programs. Pseudocode is similar to everyday English; it’s convenient and user friend-
ly, although it isn’t an actual computer programming language.

Pseudocode does 7oz execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as C++.

The style of pseudocode we present consists purely of characters, so you can type
pseudocode conveniently, using any editor program. A carefully prepared pseudocode pro-
gram can easily be converted to a corresponding C++ program. In many cases, this simply
requires replacing pseudocode statements with C++ equivalents.

Pseudocode normally describes only executable statements, which cause specific
actions to occur after you convert a program from pseudocode to C++ and the program is
compiled and run on a computer. Declarations (that do not have initializers or do not
involve constructor calls) are 70z executable statements. For example, the declaration

int counter;

tells the compiler the type of variable counter and instructs the compiler to reserve space
in memory for the variable. This declaration does 70 cause any action—such as input,
output or a calculation—to occur when the program executes. We typically do not include
variable declarations in our pseudocode. Some programmers choose to list variables and
mention their purposes at the beginning of pseudocode programs.

Let’s look at an example of pseudocode that may be written to help a programmer
create the addition program of Fig. 2.5. This pseudocode (Fig. 4.1) corresponds to the
algorithm that inputs two integers from the user, adds these integers and displays their
sum. We show the complete pseudocode listing here—we’ll show how to create pseudocode
from a problem statement later in the chapter.

Lines 1-2 correspond to the statements in lines 13-14 of Fig. 2.5. Notice that the
pseudocode statements are simply English statements that convey what task is to be per-
formed in C++. Likewise, lines 45 correspond to the statements in lines 16-17 of Fig. 2.5
and lines 7—8 correspond to the statements in lines 19 and 21 of Fig. 2.5.

Prompt the user to enter the first integer
Input the first integer

Prompt the user to enter the second integer
Input the second integer

Add first integer and second integer, store result
Display result

O ~NOo N dh WN -

Fig. 4.1 | Pseudocode for the addition program of Fig. 2.5.

4.4 Control Structures 107

4.4 Control Structures

Normally, statements in a program execute one after the other in the order in which
they’re written. This is called sequential execution. Various C++ statements we’ll soon dis-
cuss enable you to specify that the next statement to execute may be other than the next one
in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. Blame was
pointed at the goto statement, which allows you to specify a transfer of control to one of
a wide range of possible destinations in a program (creating what’s often called “spaghetti
code”). The notion of so-called structured programming became almost synonymous
with “goto elimination.”

The research of Bshm and Jacopini! demonstrated that programs could be written
without any goto statements. It became the challenge of the era for programmers to shift
their styles to “goto-less programming.” It was not until the 1970s that programmers
started taking structured programming seriously. The results have been impressive, as soft-
ware development groups have reported reduced development times, more frequent on-
time delivery of systems and more frequent within-budget completion of software proj-
ects. The key to these successes is that structured programs are clearer, easier to debug, test
and modify and more likely to be bug-free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures, namely, the sequence structure, the selection structure
and the repetition structure. The term “control structures” comes from the field of com-
puter science. When we introduce C++’s implementations of control structures, we’ll refer
to them in the terminology of the C++ standard document as “control statements.”

Sequence Structure in C++

The sequence structure is built into C++. Unless directed otherwise, the computer executes
C++ statements one after the other in the order in which they’re written—that is, in se-
quence. The UML activity diagram of Fig. 4.2 illustrates a typical sequence structure in

_________ Corresponding C++ statement:
total = total + grade;

Corresponding C++ statement:
counter = counter + 1;

Fig. 4.2 | Sequence-structure activity diagram.

1. Béhm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 366-371.

108 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

which two calculations are performed in order. C++ allows you to have as many actions as
you want in a sequence structure. As you'll soon see, anywhere a single action may be
placed, you may place several actions in sequence.

In this figure, the two statements add a grade to a total variable and add the value 1
to a counter variable. Such statements might appear in a program that averages several stu-
dent grades. To calculate an average, the total of the grades being averaged is divided by the
number of grades. A counter variable would be used to keep track of the number of values
being averaged. You'll see similar statements in the program of Section 4.8.

An activity diagram models the workflow (also called the activity) of a portion of a
software system. Such workflows may include a portion of an algorithm, such as the
sequence structure in Fig. 4.2. Activity diagrams are composed of special-purpose sym-
bols, such as action state symbols (a rectangle with its left and right sides replaced with
arcs curving outward), diamonds and small circles; these symbols are connected by tran-
sition arrows, which represent the flow of the activity.

Activity diagrams clearly show how control structures operate. Consider the
sequence-structure activity diagram of Fig. 4.2. It contains two action states that represent
actions to perform. Each action state contains an action expression—e.g., “add grade to
total” or “add 1 to counter”—that specifies a particular action to perform. Other actions
might include calculations or input/output operations. The arrows in the activity diagram
are called transition arrows. These arrows represent transitions, which indicate the order
in which the actions represented by the action states occur—the program that implements
the activities illustrated by the activity diagram in Fig. 4.2 first adds grade to total, then
adds 1 to counter.

The solid circle at the top of the diagram represents the activity’s initial state—the
beginning of the workflow before the program performs the modeled activities. The solid
circle surrounded by a hollow circle that appears at the bottom of the activity diagram rep-
resents the final state—the end of the workflow affer the program performs its activities.

Figure 4.2 also includes rectangles with the upper-right corners folded over. These are
called notes in the UML—explanatory remarks that describe the purpose of symbols in
the diagram. Figure 4.2 uses UML notes to show the C++ code associated with each action
state in the activity diagram. A dotted line connects each note with the element that the
note describes. Activity diagrams normally do not show the C++ code that implements the
activity. We use notes for this purpose here to illustrate how the diagram relates to C++
code. For more information on the UML, see our optional (but strongly recommended)
case study, which appears in Chapters 25-26, and visit our UML Resource Center at
www.deitel.com/UML/.

Selection Statements in C++
C++ provides three types of selection statements (discussed in this chapter and Chapter 5).
The 1 f selection statement either performs (selects) an action if a condition is true or skips
the action if the condition is false. The if...eTse selection statement performs an action
if a condition is true or performs a different action if the condition is false. The switch
selection statement (Chapter 5) performs one of many different actions, depending on the
value of an integer expression.

The if selection statement is a single-selection statement because it selects or ignores
a single action (or, as you'll soon see, a single group of actions). The if...else statement is

www.deitel.com/UML/

4.4 Control Structures 109

called a double-selection statement because it selects between two different actions (or
groups of actions). The switch selection statement is called a multiple-selection state-
ment because it selects among many different actions (or groups of actions).

Repetition Statements in C++
C++ provides three types of repetition statements (also called looping statements or loops)
for performing statements repeatedly while a condition (called the loop-continuation con-
dition) remains true. These are the while, do...while and for statements. (Chapter 5
presents the do...while and for statements, and Chapter 7 presents a specialized version
of the for statement that’s used with so-called arrays and containers.) The while and for
statements perform the action (or group of actions) in their bodies zero or more times—
if the loop-continuation condition is initially false, the action (or group of actions) will 7oz
execute. The do...while statement performs the action (or group of actions) in its body a#
least once.

Each of the words if, else, switch, while, do and for is a C++ keyword. Keywords
cannor be used as identifiers, such as variable names, and must be spelled with only lower-
case letters. Figure 4.3 provides a complete list of C++ keywords.

C++ Keywords

Keywords common to the C and C++ programming languages

auto break case char const
continue default do double else

enum extern float for goto

if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while

C++-only keywords

and and_eq asm bitand bitor

bool catch class compl const_cast
delete dynamic_cast explicit export false
friend inTline mutable namespace new

not not_eq operator or or_eq
private protected public reinterpret_cast static_cast
tempTlate this throw true try

typeid typename using virtual wchar_t

xor xor_eq

C++11 keywords

alignas alignof charl6_t char32_t constexpr
decltype noexcept nullptr static_assert thread_local

Fig. 4.3 | C++ keywords.

1

110 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

Summary of Control Statements in C++

C++ has only three kinds of control structures, which from this point forward we refer to
as control statements: the sequence statement, selection statements (three types—if,
if...else and switch) and repetition statements (three types—while, for and
do...while). Each program combines as many of each of these control statements as ap-
propriate for the algorithm the program implements. We can model each control state-
ment as an activity diagram with initial and final states representing that control
statement’s entry and exit points, respectively. These single-entry/single-exit control
statements make it easy to build programs—control statements are attached to one anoth-
er by connecting the exit point of one to the entry point of the next. This is similar to the
way a child stacks building blocks, so we call this control-statement stacking. You'll see
that there’s only one other way to connect control statements—called control-statement
nesting, in which one control statement is contained #7side another.

Software Engineering Observation 4.1

Any C++ program can be constructed from only seven different types of control statements
(sequence, if, if...else, switch, while, do...while and for) combined in only two
ways (control-statement stacking and control-statement nesting).

4.5 1if Selection Statement

Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose the passing grade on an exam is 60. The pseudocode statement

If students grade is greater than or equal to 60
Print “Passed”

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, “Passed” is printed and the next pseudocode statement
in order is “performed” (remember that pseudocode is not a real programming language).
If the condition is false, the print statement is ignored and the next pseudocode state-
ment in order is performed. The indentation of the second line is optional, but it’s recom-
mended because it emphasizes the inherent structure of structured programs.

The preceding pseudocode /f'statement can be written in C++ as

if (grade >=)
cout << o

The C++ code corresponds closely to the pseudocode. This is one of the properties of
pseudocode that make it such a useful program development tool.

I¢’s important to note here that we're casually assuming that grade contains a valid
value—an integer in the range 0 to 100. Throughout the book, we’ll introduce many
important validation techniques.

= Error-Prevention Tip 4.1
&%, | Inindustrial-strength code, always validate all inputs.

LS
[~

4.5 1f Selection Statement 11

Figure 4.4 illustrates the single-selection 1f statement. It contains what is perhaps zhe
most important symbol in an activity diagram—the diamond or decision symbol, which
indicates that a decision is to be made. A decision symbol indicates that the workflow will
continue along a path determined by the symbol’s associated guard conditions, which
can be true or false. Each transition arrow emerging from a decision symbol has a guard
condition specified in square brackets above or next to the transition arrow. If a particular
guard condition is true, the workflow enters the action state to which that transition
arrow points. In Fig. 4.4, if the grade is greater than or equal to 60, the program prints
“Passed” to the screen, then transitions to the final state of this activity. If the grade is less
than 60, the program immediately transitions to the final state without displaying a mes-
sage.

[grade >= 60]

[grade < 60]
O

Fig. 4.4 | if single-selection statement activity diagram.

You saw in Chapter 2 that decisions can be based on conditions containing relational
or equality operators. Actually, in C++, a decision can be based on any expression—if the
expression evaluates to zero, iC’s treated as false; if the expression evaluates to nonzero, ic’s
treated as true. C++ provides the data type bool for variables that can hold only the values
true and false—each of these is a C++ keyword.

e Portability Tip 4.1
& For compatibility with earlier versions of C, which used integers for Boolean values, the
=l bool value true also can be represented by any nonzero value (compilers typically use 1)
and the bool value false also can be represented as the value zero.

The i f statement is a single-entry/single-exit statement. We'll see that the activity dia-
grams for the remaining control statements also contain initial states, transition arrows,
action states that indicate actions to perform, decision symbols (with associated guard con-
ditions) that indicate decisions to be made and final states.

Envision seven bins, each containing only empty UML activity diagrams of one of the
seven types of control statements. Your task, then, is assembling a program from the
activity diagrams of as many of each type of control statement as the algorithm demands,
combining the activity diagrams in only two possible ways (stacking or nesting), then

112 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

filling in the action states and decisions with action expressions and guard conditions in a
manner appropriate to form a structured implementation for the algorithm. We’ll con-
tinue discussing the variety of ways in which actions and decisions may be written.

4.6 if...else Double-Selection Statement

The if single-selection statement performs an indicated action only when the condition
is true; otherwise the action is skipped. The if...e1se double-selection statement allows
you to specify an action to perform when the condition is true and a different action to
perform when the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

prints “Passed” if the student’s grade is greater than or equal to 60, but prints “Failed” if
the student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.”

The preceding pseudocode If... Else statement can be written in C++ as

if (grade >= 60)
cout << "Passed";
else
cout << "Failed";

The body of the else is also indented.

w75 Good Programming Practice 4.1
? If there are several levels of indentation, each level should be indented the same additional
S amount of space to promote readability and maintainability.

Figure 4.5 illustrates the the if...eTse statement’s flow of control.

[grade < 60] [grade >= 60]

®

Fig. 4.5 | if..el1se double-selection statement activity diagram.

4.6 1if...else Double-Selection Statement 113

Conditional Operator (?:)

C++ provides the conditional operator (?:), which is closely related to the i f...eTse state-
ment. The conditional operator is C++’s only ternary operator—it takes three operands.
The operands, together with the conditional operator, form a conditional expression. The
first operand is a condition, the second operand is the value for the entire conditional ex-
pression if the condition is true and the third operand is the value for the entire condi-
tional expression if the condition is false. For example, the output statement

cout << (grade >= ? : Mk

contains a conditional expression, grade >= 60 ? "Passed" : "Failed", that evaluates to
the string "Passed" if the condition grade >= 60 is true, but evaluates to "Failed" if the
condition is false. Thus, the statement with the conditional operator performs essentially
the same as the preceding if...el1se statement. As we'll see, the precedence of the condi-
tional operator is low, so the parentheses in the preceding expression are required.

w=, Error-Prevention Tip 4.2

" | To avoid precedence problems (and for clarity), place conditional expressions (that appear
in larger expressions) in parentheses.

The values in a conditional expression also can be actions to execute. For example, the
following conditional expression also prints "Passed" or "Failed":

grade >= ? cout << : cout << ;

The preceding conditional expression is read, “If grade is greater than or equal to 60, then
cout << "Passed"; otherwise, cout << "Failed".” This, too, is comparable to the preced-
ing if...else statement. Conditional expressions can appear in some program locations
where if...else statements cannot.

Nested if...else Statements

Nested if...else statements test for multiple cases by placing if...else selection state-
ments inside other if...else selection statements. For example, the following pseudocode
if...else statement prints A for exam grades greater than or equal to 90, B for grades in
the range 80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69
and F for all other grades:

If students grade is greater than or equal to 90
Print ‘A”
Else
If student’s grade is greater than or equal to 80
Print “B”
Else
If student’s grade is greater than or equal to 70
Print “C”
Else
If student’s grade is greater than or equal to 60
Print “D”
Else
Print “F”

114 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

This pseudocode can be written in C++ as

if (studentGrade >=) // 90 and above gets "A"
cout << o
else
if (studentGrade >=) // 80-89 gets "B"
cout << o
else
if (studentGrade >=) // 70-79 gets "C"
cout << g
else
if (studentGrade >=) // 60-69 gets "D"
cout << 0
else // less than 60 gets "F"
cout << g

If studentGrade is greater than or equal to 90, the first four conditions are true, but only
the statement after the first test executes. Then, the program skips the else-part of the
“outermost” if...else statement. Most programmers write the preceding statement as

if (studentGrade >=) // 90 and above gets "A"
cout << ;

else if (studentGrade >=) // 80-89 gets "B"
cout << H

else if (studentGrade >=) // 70-79 gets "C"
cout << 5

else if (studentGrade >=) // 60-69 gets "D"
cout << ;

else // less than 60 gets "F"
cout << H

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form is popular because it avoids deep indentation of the code to the
right, which can force lines to wrap.

37 Performance Tip 4.1
L A nested it... else statement can perform much faster than a series of single-selection if
© ' statements because of the possibility of early exit after one of the conditions is satisfied.

57 Performance Tip 4.2
L [n a nested i ... else statement, test the conditions that are more likely to be true at the
“ ' beginning of the nested statement. This will enable the nested if...else statement to run

[aster by exiting earlier than if infrequently occurring cases were tested first.

Dangling-else Problem

The C++ compiler always associates an e1se with the immediately preceding i unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what’s re-
ferred to as the dangling-else problem. For example,

if (x>)
if Cy>5)
cout << ;
else

cout << :

4.6 1if...else Double-Selection Statement 115

appears to indicate that if x is greater than 5, the nested i f statement determines whether
y is also greater than 5. If so, "x and y are > 5" is output. Otherwise, it appears that if x is
not greater than 5, the else part of the if...eTse outputs "x is <= 5".

Beware! This nested if...eTse statement does not execute as it appears. The compiler
actually interprets the statement as

if (x>)
if Cy>5)
cout << ;
else
cout << ;

in which the body of the first i f is a nested i f...eTse. The outer i f statement tests wheth-
er x is greater than 5. If so, execution continues by testing whether y is also greater than 5.
If the second condition is true, the proper string—"x and y are > 5"—is displayed. How-
ever, if the second condition is false, the string "x is <= 5" is displayed, even though we
know that x is greater than 5.

To force the nested if...else statement to execute as originally intended, we can
write it as follows:

if (x> 5)
{
if Cy>5)
cout << ;

}

else
cout << ;

The braces ({3) indicate to the compiler that the second 1 f statement is in the body of the
first i f and that the else is associated with the first i f. Exercises 4.23—4.24 further inves-
tigate the dangling-else problem.

Blocks

The if selection statement expects only one statement in its body. Similarly, the if and
else parts of an if...else statement each expect only one body statement. To include sev-
eral statements in the body of an if or in either part of an if...else, enclose the state-
ments in braces ({ and }). A set of statements contained within a pair of braces is called a
compound statement or a block. We use the term “block” from this point forward.

4w Software Engineering Observation 4.2
* A block can be placed anywhere in a program that a single statement can be placed.
_

4

The following example includes a block in the eTse part of an if...else statement.

if (studentGrade >=)
cout << H
else
{
cout << o
cout << ;

116 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

In this case, if studentGrade is less than 60, the program executes both statements in the
body of the else and prints

Failed.
You must take this course again.

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

cout << ;

would be outside the body of the else part of the if and would execute regardless of
whether the grade was less than 60. This is a logic error.

Just as a block can be placed anywhere a single statement can be placed, it’s also
possible to have no statement at all, which is called a null statement or an empty state-
ment. The null statement is represented by placing a semicolon (;) where a statement
would normally be.

-L

Placing a semicolon after the condition in an if statement leads to a logic error in single-
selection if statements and a syntax error in double-selection if...else statements (when
the if part contains an actual body statement).

L '.'I = Common Programming Error 4.1

-

4.7 while Repetition Statement

A repetition statement specifies that a program should repeat an action while some con-
dition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition, “there are more
items on my shopping list” is either true or false. If it’s true, then the action, “Purchase
next item and cross it off my list” is performed. This action will be performed repeatedly
while the condition remains true. The statement contained in the While repetition state-
ment constitutes the body of the While, which can be a single statement or a block. Even-
tually, the condition will become false (when the last item on the shopping list has been
purchased and crossed off the list). At this point, the repetition terminates, and the first
pseudocode statement after the repetition statement executes.

As an example of C++’s while repetition statement, consider a program segment
designed to find the first power of 3 larger than 100. Suppose the integer variable product
has been initialized to 3. When the following while repetition statement finishes exe-
cuting, product contains the result:

int product = 3;

while (product <=)

product = * product;

When the while statement begins execution, product’s value is 3. Each repetition multi-
plies product by 3, so product takes on the values 9, 27, 81 and 243 successively. When
product becomes 243, the while statement condition (product <= 100) becomes false.

4.7 whiTe Repetition Statement 117

This terminates the repetition, so the final value of product is 243. At this point, program
execution continues with the next statement after the while statement.

A logic error called an infinite loop, in which the repetition statement never terminates,
occurs if you do not provide an action in a while statement’s body that eventually causes
the condition in the while to become false normally. This can make a program appear to
“hang” or “freeze” if the loop body does not contain statements that interact with the user.

;{_;;I = Common Programming Error 4.2
=

The UML activity diagram of Fig. 4.6 illustrates the flow of control that corresponds
to the preceding while statement. Once again, the symbols in the diagram (besides the ini-
tial state, transition arrows, a final state and three notes) represent an action state and a
decision. This diagram also introduces the UML’s merge symbol, which joins two flows
of activity into one flow of activity. The UML represents bozh the merge symbol and the
decision symbol as diamonds. In this diagram, the merge symbol joins the transitions from
the initial state and from the action state, so they boz/ flow into the decision that deter-
mines whether the loop should begin (or continue) executing. The decision and merge
symbols can be distinguished by the number of “incoming” and “outgoing” transition
arrows. A decision symbol has one transition arrow pointing 7o the diamond and two or
more transition arrows pointing out from the diamond to indicate possible transitions
from that point. In addition, each transition arrow pointing out of a decision symbol has
a guard condition next to it. A merge symbol has two or more transition arrows pointing
to the diamond and only one transition arrow pointing from the diamond, to indicate mul-
tiple activity flows merging to continue the activity. Unlike the decision symbol, the merge
symbol does 70t have a counterpart in C++ code.

merge ~ _
decision ~ _
[product > 100] R N

@ Corresponding C++ statement:
product = 3 * product;

Fig. 4.6 | while repetition statement UML activity diagram.

The diagram of Fig. 4.6 clearly shows the repetition of the whiTe statement discussed
earlier in this section. The transition arrow emerging from the action state points to the
merge, which transitions back to the decision that’s tested each time through the loop until
the guard condition product > 100 becomes true. Then the while statement exits (reaches
its final state) and control passes to the next statement in sequence in the program.

118 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

= Performance Tip 4.3
¥ A small performance improvement for code that executes many times in a loop can result
' in substantial overall performance improvement.

1=
I

4.8 Formulating Algorithms: Counter-Controlled
Repetition

To illustrate how programmers develop algorithms, this section and Section 4.9 solve two
variations of a class average problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (0 to 100) for this quiz are available to
you. Calculate and display the total of the grades and the class average.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, calculate
the average and print the result.

Pseudocode Algorithm with Counter-Controlled Repetition
Let’s use pseudocode to list the actions to execute and specify the order in which these ac-
tions should occur. We use counter-controlled repetition to input the grades one at a
time. This technique uses a variable called a counter to control the number of times a
group of statements will execute (also known as the number of iterations of the loop).
Counter-controlled repetition is often called definite repetition because the number
of repetitions is known before the loop begins executing. In this example, repetition termi-
nates when the counter exceeds 10. This section presents a fully developed pseudocode
algorithm (Fig. 4.7) and a version of class GradeBook (Figs. 4.8—4.9) that implements the
algorithm in a C++ member function. The section then presents an application (Fig. 4.10)
that demonstrates the algorithm in action. In Section 4.9 we demonstrate how to use
pseudocode to develop such an algorithm from scratch.

The most difficult part of solving a problem on a computer is developing the algorithm.

i Software Engineering Observation 4.3
& -l "'*t’ Producing a working C++ program from the algorithm is typically straightforward.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Prompt the user to enter the next grade
Input the next grade
Add the grade into the total
Add one to the grade counter

O ~NOUNh WN =

-]

10 Set the class average to the total divided by ten
L1 Print the total of the grades for all students in the class
12 Print the class average

Fig. 4.7 | Pseudocode for solving the class average problem with counter-controlled repetition.

4.8 Formulating Algorithms: Counter-Controlled Repetition 119

Note the references in the pseudocode algorithm of Fig. 4.7 to a total and a counter.
A total is a variable used to accumulate the sum of several values. A counter is a variable
used to count—in this case, the grade counter indicates which of the 10 grades is about to
be entered by the user. Variables that are used to store totals are normally initialized to zero
before being used in a program; otherwise, the sum would include the previous value
stored in the total’s memory location. Recall from Chapter 2 that all variables should be
initialized.

Enbancing GradeBook Validation

Let’s consider an enhancement we made to class GradeBook. In Fig. 3.16, our setCourse-
Name member function validated the course name by testing whether the course name’s
length was less than or equal to 25 characters, using an i f statement. If this was true, the
course name would be set. This code was followed by an i f statement that tested whether
the course name’s length was larger than 25 characters (in which case the course name
would be shortened). The second 1 f statement’s condition is the exact opposite of the first
if statement’s condition. If one condition evaluates to true, the other must evaluate to
false. Such a situation is ideal for an i f...e1se statement, so we’ve modified our code, re-
placing the two if statements with one if...e1se statement, as shown in lines 18-25 of

Fig. 4.9).

Implementing Counter-Controlled Repetition in Class GradeBook

Class GradeBook (Figs. 4.8—4.9) contains a constructor (declared in line 10 of Fig. 4.8 and
defined in lines 9—12 of Fig. 4.9) that assigns a value to the class’s data member course-
Name (declared in line 16 of Fig. 4.8). Lines 16-26, 29-32 and 35-39 of Fig. 4.9 define
member functions setCourseName, getCourseName and displayMessage, respectively.
Lines 42—-64 define member function determineClassAverage, which implements the
class average algorithm described by the pseudocode in Fig. 4.7.

1 // Fig. 4.8: GradeBook.h

2 // Definition of class GradeBook that determines a class average.
3 // Member functions are defined in GradeBook.cpp

4 #include <string> // program uses C++ standard string class

5

6 // GradeBook class definition

7 class GradeBook

8 {

9 public:

10 explicit GradeBook(std::string); // initializes course name
11 void setCourseName(std::string); // set the course name

12 std::string getCourseName() const; // retrieve the course name
13 void displayMessage() const; // display a welcome message

14 void determineClassAverage() const; // averages user-entered grades
15 private:

16 std::string courseName; // course name for this GradeBook

17 }; // end class GradeBook

Fig. 4.8 | Class average problem using counter-controlled repetition: GradeBook header.

120 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

VO~NONUNDWN=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

// Fig. 4.9: GradeBook.cpp

// Member-function definitions for class GradeBook that solves the
// class average program with counter-controlled repetition.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook(string name)
{
setCourseName(name); // validate and store courseName
} // end GradeBook constructor

// function to set the course name;
// ensures that the course name has at most 25 characters
void GradeBook: :setCourseName(string name)
{
if (name.size() <= 25) // if name has 25 or fewer characters
courseName = name; // store the course name in the object
else // if name is longer than 25 characters
{ // set courseName to first 25 characters of parameter name
courseName = name.substr(0, 25); // select first 25 characters
cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
<< "Limiting courseName to first 25 characters.\n" << endl;
} // end if...else
} // end function setCourseName

// function to retrieve the course name
string GradeBook::getCourseName() const
{

return courseName;
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
{
cout << "Welcome to the grade book for\n" << getCourseName() << "I\n"
<< endl;
} // end function displayMessage

// determine class average based on 10 grades entered by user
void GradeBook: :determineClassAverage() const
{
// initialization phase
int total = 0; // sum of grades entered by user
unsigned int gradeCounter = 1; // number of grade to be entered next

// processing phase
while (gradeCounter <= 10) // Toop 10 times

{

cout << "Enter grade: "; // prompt for input

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook source code
file. (Part | of 2.)

4.8 Formulating Algorithms: Counter-Controlled Repetition 121

52 int grade = 0; // grade value entered by user

53 cin >> grade; // input next grade

54 total = total + grade; // add grade to total

55 gradeCounter = gradeCounter + 1; // increment counter by 1
56 } // end while

57

58 // termination phase

59 int average = total / ; // ok to mix declaration and calculation
60

61 // display total and average of grades

62 cout << << total << endT;

63 cout << << average << endl;

64 1} // end function determineClassAverage

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook source code
file. (Part 2 of 2.)

Because the gradeCounter variable (Fig. 4.9, line 46) is used to count from 1 to 10
in this program (all positive values), we declared the variable as an unsigned int, which
can store only non-negative values (that is, 0 and higher). Local variables total (Fig. 4.9,
line 45), grade (line 52) and average (line 59) to be of type int. Variable grade stores the
user input. Notice that the preceding declarations appear in the body of member function
determineClassAverage. Also, variable grade is declared in the while statement’s body
because it’s used only in the loop—in general, variables should be declared just before
they’re used. We initialize grade to 0 (line 52) as a good practice, even though a new value
is immediately input for grade in line 53.

w75 Good Programming Practice 4.2
} Declare each variable on a separate line with its own comment for readability.
-

In this chapter’s versions of class GradeBook, we simply read and process a set of
grades. The averaging calculation is performed in member function determineClass-
Average using local variables—we do not preserve any information about student grades
in the class’s data members. In Chapter 7, we modify class GradeBook to maintain the
grades in memory using a data member that refers to a data structure known as an array.
This allows a GradeBook object to perform various calculations on a set of grades without
requiring the user to enter the grades multiple times.

Lines 4546 initialize total to 0 and gradeCounter to 1 before they’re used in calcula-
tions. You’'ll normally initialize counter variables to zero or one, depending on how they are
used in an algorithm. An uninitialized variable contains a “garbage” value (also called an
undefined value)—the value last stored in the memory location reserved for that variable.

< Error-Prevention Tip 4.3
g | Always initialize variables when they’re declared. This helps you avoid logic errors that
) occur when you perform calculations with uninitialized variables.

< Error-Prevention Tip 4.4
G5 | In some cases, compilers issue a warning if you attempt to use an uninitialized variable’s
value. You should always get a clean compile by resolving all errors and warnings.

122 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

Line 49 indicates that the while statement should continue looping (also called iter-
ating) as long as gradeCounter’s value is less than or equal to 10. While this condition
remains true, the while statement repeatedly executes the statements between the braces
that delimit its body (lines 49-56).

Line 51 displays the prompt "Enter grade: ". This line corresponds to the pseudo-
code statement “Prompt the user to enter the next grade.” Line 53 reads the grade entered by
the user and assigns it to variable grade. This line corresponds to the pseudocode state-
ment ‘Tnput the next grade.” Line 54 adds the new grade entered by the user to the total
and assigns the result to total, which replaces its previous value.

Line 55 adds 1 to gradeCounter to indicate that the program has processed the cur-
rent grade and is ready to input the next grade from the user. Incrementing gradeCounter
eventually causes gradeCounter to exceed 10. At that point the while loop terminates
because its condition (line 49) becomes false.

When the loop terminates, line 59 performs the averaging calculation and assigns its
result to the variable average. Line 62 displays the text "Total of all 10 grades is "
followed by variable total’s value. Line 63 then displays the text "Class average is
followed by variable average’s value. Member function determineClassAverage then
returns control to the calling function (i.e., main in Fig. 4.10).

Demonstrating Class GradeBook

Figure 4.10 contains this application’s main function, which creates an object of class
GradeBook and demonstrates its capabilities. Line 9 of Fig. 4.10 creates a new GradeBook
object called myGradeBook. The string in line 9 is passed to the GradeBook constructor
(lines 9-12 of Fig. 4.9). Line 11 of Fig. 4.10 calls myGradeBook’s displayMessage mem-
ber function to display a welcome message to the user. Line 12 then calls myGradeBook’s
determineClassAverage member function to allow the user to enter 10 grades, for which
the member function then calculates and prints the average—the member function per-
forms the algorithm shown in the pseudocode of Fig. 4.7.

1 // Fig. 4.10: fig04_10.cpp

2 // Create GradeBook object and invoke its determineClassAverage function.
3 #include // include definition of class GradeBook

4

5 dnt mainQ

6 {

7 // create GradeBook object myGradeBook and

8 // pass course name to constructor

9 GradeBook myGradeBook();

10

11 myGradeBook.displayMessage(); // display welcome message

12 myGradeBook.determineClassAverage(); // find average of 10 grades

13 } // end main

Welcome to the grade book for
CS101 C++ Programming

Fig. 4.10 | Class average problem using counter-controlled repetition: Creating a GradeBook
object (Fig. 4.8-Fig. 4.9) and invoking its determineClassAverage member function. (Part | of 2.)

4.8 Formulating Algorithms: Counter-Controlled Repetition 123

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades 1is 846
Class average is 84

Fig. 4.10 | Class average problem using counter-controlled repetition: Creating a GradeBook
object (Fig. 4.8-Fig. 4.9) and invoking its determineClassAverage member function. (Part 2 of 2.)

Notes on Integer Division and Truncation

The averaging calculation performed in response to the function call in line 12 of Fig. 4.10
produces an integer result. The sample execution indicates that the sum of the grade values
is 846, which, when divided by 10, should yield 84.6—a number with a decimal point.
However, the result of the calculation total / 10 (line 59 of Fig. 4.9) is the integer 84,
because total and 10 are both integers. Dividing two integers results in integer division—
any fractional part of the calculation is truncated (i.e., discarded). We'll see how to obtain
a result that includes a decimal point from the averaging calculation in the next section.

\ Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
; For example, 7 + 4, yields 1.75 in conventional arithmetic, but truncates the floating-
point part (.75) in integer arithmetic. So the result is 1. Similarly, —7 + 4, yields —1.

-_-;I = Common Programming Error 4.3
8

In Fig. 4.9, if line 59 used gradeCounter rather than 10, the output for this program
would display an incorrect value, 76. This would occur because in the final iteration of the
while statement, gradeCounter was incremented to the value 11 in line 55.

Using a loop’s counter control variable in a calculation after the loop often causes a com-
mon logic error called an off-by-one error. In a counter-controlled loop that counts up by
one each time through the loop, the loop terminates when the counter’s value is one higher
than its last legitimate value (i.e., 11 in the case of counting from 1 to 10).

.‘_{f Common Programming Error 4.4

-

A Note About Arithmetic Overflow
In Fig. 4.9, line 54

total = total + grade; // add grade to total

added cach grade entered by the user to the total. Even this simple statement has a
potential problem—adding the integers could result in a value that’s 200 large to store in an
int variable. This is known as arithmetic overflow and causes undefined behavior, which

124 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

can lead to unintended results (en.wikipedia.org/wiki/Integer_overflow#Security_
ramifications). Figure 2.5’s addition program had the same issue in line 19, which cal-
culated the sum of two int values entered by the user:

sum = numberl + number2; // add the numbers; store result in sum

The maximum and minimum values that can be stored in an int variable are repre-
sented by the constants INT_MAX and INT_MIN, respectively, which are defined in the header
<cTimits>. There are similar constants for the other integral types and for floating-point
types. You can see your platform’s values for these constants by opening the headers
<climits> and <cfloat> in a text editor (you can search your file system for these files).

If’s considered a good practice to ensure that before you perform arithmetic calcula-
tions like the ones in line 54 of Fig. 4.9 and line 19 of Fig. 2.5, they will zor overflow. The
code for doing this is shown on the CERT website www. securecoding.cert.org—just
search for guideline “INT32-CPP.” The code uses the & (logical AND) and || (logical
OR) operators, which are introduced in Chapter 5. In industrial-strength code, you
should perform checks like these for a// calculations.

A Deeper Look at Receiving User Input
Any time a program receives input from the user various problems might occur. For ex-
ample, in line 53 of Fig. 4.9

cin >> grade; // input next grade

we assume that the user will enter an integer grade in the range 0 to 100. However, the
person entering a grade could enter, an integer less than 0, an integer greater than 100, an
integer outside the range of values that can be stored in an int variable, a number contain-
ing a decimal point or a value containing letters or special symbols that’s not even an in-
teger.

To ensure that the user’s input is valid, industrial-strength programs must test for all
possible erroneous cases. As you progress through the book, you’ll learn various techniques
for dealing with the broad range of possible input problems.

4.9 Formulating Algorithms: Sentinel-Controlled
Repetition
Let’s generalize the class average problem. Consider the following problem:

Develop a class average program that processes grades for an arbitrary number of stu-
dents each time it’s run.

In the previous example, the problem statement specified the number of students, so the
number of grades (10) was known in advance. In this example, no indication is given of
how many grades the user will enter during the program’s execution. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

To solve this problem, we can use a special value called a sentinel value (also called a
signal value, a dummy value or a flag value) to indicate “end of data entry.” After typing
the legitimate grades, the user types the sentinel value to indicate that the last grade has

www.securecoding.cert.org

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 125

been entered. Sentinel-controlled repetition is often called indefinite repetition because
the number of repetitions is 7ot known before the loop begins executing,.

The sentinel value must be chosen so that it’s not confused with an acceptable input
value. Grades are normally nonnegative integers, so —1 is an acceptable sentinel value.
Thus, a run of the program might process inputs such as 95, 96, 75, 74, 89 and —1. The
program would then compute and print the class average for the grades 95, 96, 75, 74 and
89. Since —1 is the sentinel value, it should not enter into the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement: The Top
and First Refinement

We approach the class average program with a technique called top-down, stepwise re-
finement, a technique that’s helpful to the development of well-structured programs. We
begin with a pseudocode representation of the top—a single statement that conveys the
overall function of the program:

Determine the class average for the quiz for an arbitrary number of students

The top is, in effect, a complete representation of a program. Unfortunately, the top (as in
this case) rarely conveys sufficient detail from which to write a program. So we now begin
the refinement process. We divide the top into a series of smaller tasks and list these in the
order in which they need to be performed. This results in the following first refinement.

Initialize variables
Input, sum and count the quiz grades
Caleulate and print the toral of all student grades and the class average

This refinement uses only the sequence structure—these steps execute in order.

449 Software Engineering Observation 4.4

® Luch refinement, as well as the top itself, is a complete specification of the algorithm; only
S50 the level of detail varies.

#4r Software Engineering Observation 4.5

) « .
]

Many programs can be divided logically into three phases: an initialization phase that
I8 initializes the program variables, a processing phase that inputs data values and adjusts
program variables (such as counters and torals) accordingly, and a termination phase
that calculates and outputs the final results.

Proceeding to the Second Refinement

The preceding Software Engineering Observation is often all you need for the first refine-
ment in the top-down process. In the second refinement, we commit to specific variables.
In this example, we need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade as it’s entered by the user
and a variable to hold the calculated average. The pseudocode statement

Initialize variables

can be refined as follows:

Initialize total to zero
Initialize counter to zero

126 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

The pseudocode statement

Input, sum and count the quiz grades

requires a repetition statement (i.c., a loop) that successively inputs each grade. We don’t
know in advance how many grades are to be processed, so we'll use sentinel-controlled
repetition. The user enters legitimate grades one at a time. After entering the last legiti-
mate grade, the user enters the sentinel value. The program tests for the sentinel value after
cach grade is input and terminates the loop when the user enters the sentinel value. The
second refinement of the preceding pseudocode statement is then

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yer entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

In pseudocode, we do 70t use braces around the statements that form the body of the

While structure. We simply indent the statements under the While to show that they be-

long to the While. Again, pseudocode is only an informal program development aid.
The pseudocode statement

Caleulate and print the toral of all student grades and the class average
can be refined as follows:

If the counter is not equal ro zero
Set the average to the rotal divided by the counter
Print the rotal of the grades for all students in the class
Print the class average

else
Print “No grades were entered”

We test for the possibility of division by zero—normally a fatal logic error that, if unde-
tected, would cause the program to fail (often called “crashing”). The complete second re-
finement of the pseudocode for the class average problem is shown in Fig. 4.11.

= 7o 8 Common Programming Error 4.5
’ ‘{ Dividing by zero cuases undefined behavior and normally causes a fatal runtime error.

D Z

Initialize total to zero
Initialize counter to zero

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

BNdh WN -

Fig. 4.11 | Sentinel-controlled class average problem pseudocode algorithm.

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 127

6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total

9 Add one to the grade counter
10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 [f'the counter is not equal to zero
14 Set the average ro the total divided by the counter
15 Print the total of the grades for all students in the class
16 Print the class average
17 elbse
18 Print “No grades were entered”

Fig. 4.11 | Sentinel-controlled class average problem pseudocode algorithm.

< Error-Prevention Tip 4.5
ﬁ When performing division by an expression whose value could be zero, explicitly test for
ST this possibility and handle it appropriately in your program (such as by printing an error
message) rather than allowing the fatal error to occur. We'll say more about dealing with
these kinds of errors when we discuss exception handling (Chapters 7, 9 and 17).

The pseudocode in Fig. 4.11 solves the more general class average problem. This
algorithm required only two levels of refinement. Sometimes more levels are necessary.

e Software Engineering Observation 4.6
: Terminate the top-down, stepwise refinement process when the pseudocode algorithm is
I8 specified in sufficient detail for you to convert the pseudocode to C++. Typically,

implementing the C++ program is then straightforward.

44 Software Engineering Observation 4.7
, Many experienced programmers write programs without ever using program development
S8 1o0ls like pseudocode. These programmers feel that their ultimate goal is to solve the
problem on a computer and that using program development tools like pseudocode merely
delays the production of final outputs. Although this method might work for simple and
Jfamiliar problems, it can lead to serious difficulties in large, complex projects.

Implementing Sentinel-Controlled Repetition in Class GradeBook

Figures 4.12—4.13 show class GradeBook containing member function determineClass-
Average that implements the pseudocode algorithm of Fig. 4.11 (this class is demonstrat-
ed in Fig. 4.14). Although each grade entered is an integer, the averaging calculation is
likely to produce a number with a decimal point—in other words, a real number or float-
ing-point number (e.g., 7.33, 0.0975 or 1000.12345). The type int cannot represent
such a number, so this class must use another type to do so. C++ provides several data types
for storing floating-point numbers in memory, including float and double. The primary
difference between these types is that, compared to float variables, double variables can
typically store numbers with larger magnitude and finer detail (i.e., more digits to the right
of the decimal point—also known as the number’s precision). This program introduces a

128 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

special operator called a cast operator to force the averaging calculation to produce a float-
ing-point numeric result.

1 // Fig. 4.12: GradeBook.h

2 // Definition of class GradeBook that determines a class average.

3 // Member functions are defined in GradeBook.cpp

4 #include <string> // program uses C++ standard string class

5

6 // GradeBook class definition

7 class GradeBook

8 {

9 public:

10 explicit GradeBook(std::string); // initializes course name

11 void setCourseName(std::string); // set the course name

12 std::string getCourseName() const; // retrieve the course name

13 void displayMessage() const; // display a welcome message

14 void determineClassAverage() const; // averages user-entered grades
15 private:

16 std::string courseName; // course name for this GradeBook

17 }; // end class GradeBook

Fig. 4.12 | Class average problem using sentinel-controlled repetition: GradeBook header.

1 // Fig. 4.13: GradeBook.cpp

2 // Member-function definitions for class GradeBook that solves the
3 // class average program with sentinel-controlled repetition.

4 #include <iostream>

5 #include <iomanip> // parameterized stream manipulators

6 #include "GradeBook.h" // include definition of class GradeBook

7 using namespace std;

8

9 // constructor initializes courseName with string supplied as argument
10 GradeBook::GradeBook(string name)

11 {

12 setCourseName(name); // validate and store courseName

13 } // end GradeBook constructor

14

15 // function to set the course name;

16 // ensures that the course name has at most 25 characters

17 void GradeBook::setCourseName(string name)

18 {

19 if (name.size() <= 25) // if name has 25 or fewer characters
20 courseName = name; // store the course name in the object
21 else // if name is longer than 25 characters
22 { // set courseName to first 25 characters of parameter name
23 courseName = name.substr(0, 25); // select first 25 characters
24 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
25 << "Limiting courseName to first 25 characters.\n" << endl;
26 } // end if...else
27 } // end function setCourseName

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook source code
file. (Part I of 3.)

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 129

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

// function to retrieve the course name
string GradeBook: :getCourseName() const
{

return courseName;
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
{
cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
<< endl;
} // end function displayMessage

// determine class average based on 10 grades entered by user
void GradeBook: :determineClassAverage() const
{

// initialization phase

int total = 0; // sum of grades entered by user

unsigned int gradeCounter = 0; // number of grades entered

// processing phase

// prompt for input and read grade from user
cout << "Enter grade or -1 to quit: ";
int grade = 0; // grade value

cin >> grade; // input grade or sentinel value

// Toop until sentinel value read from user

while (grade != -1) // while grade is not -1

{
total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade; // input grade or sentinel value

} // end while

// termination phase
if (gradeCounter != 0) // if user entered at least one grade...
{

// calculate average of all grades entered

double average = static_cast< double >(total) / gradeCounter;

// display total and average (with two digits of precision)
cout << "\nTotal of all " << gradeCounter << " grades entered fis
<< total << endl;
cout << setprecision(2) << fixed;
cout << "Class average is " << average << endl;
} // end if

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook source code
file. (Part 2 of 3.)

130 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

78 else // no grades were entered, so output appropriate message
79 cout << << endl;
80 1} // end function determineClassAverage

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook source code
file. (Part 3 of 3.)

1 // Fig. 4.14: fig04_14.cpp

2 // Create GradeBook object and invoke its determineClassAverage function.
3 #include // include definition of class GradeBook

4

5 dnt mainQ)

6 {

7 // create GradeBook object myGradeBook and

8 // pass course name to constructor

9 GradeBook myGradeBook ();

10

11 myGradeBook.displayMessage(); // display welcome message

12 myGradeBook .determineClassAverage(); // find average of 10 grades

13 } // end main

Welcome to the grade book for
CS101 C++ Programming

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of all 3 grades entered is 257
Class average is 85.67

Fig. 4.14 | Class average problem using sentinel-controlled repetition: Creating a GradeBook
object and invoking its determineClassAverage member function.

This example stacks control statements on top of one another—the while statement
(lines 5664 of Fig. 4.13) is immediately followed by an if...else statement (lines 67—
79) in sequence. Much of the code in this program is identical to the code in Fig. 4.9, so
we concentrate on the new features and issues.

Lines 46—47 initialize variables total and gradeCounter to 0, because no grades have
been entered yet. Remember that this program uses sentinel-controlled repetition. To
keep an accurate record of the number of grades entered, the program increments variable
gradeCounter only when the user enters a grade value that is 7oz the sentinel value and the
program completes the processing of the grade. We declared and initialized variables
grade (line 52) and average (line 70) where they are used. Notice that line 70 declares the
variable average as type double. Recall that we used an int variable in the preceding
example to store the class average. Using type double in the current example allows us to
store the class average calculation’s result as a floating-point number. Finally, notice that
both input statements (lines 53 and 63) are preceded by an output statement that prompts
the user for input.

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 131

+>7.. Good Programming Practice 4.3

Prompt the user for each keyboard input. The prompt should indicate the form of the in-
put and any special input values. In a sentinel-controlled loop, the prompts requesting
data entry should explicitly remind the user what the sentinel value is.

[E = W)

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Compare the program logic for sentinel-controlled repetition with that for counter-con-
trolled repetition in Fig. 4.9. In counter-controlled repetition, each iteration of the while
statement (lines 49-56 of Fig. 4.9) reads a value from the user, for the specified number of
iterations. In sentinel-controlled repetition, the program reads the first value (lines 51-53 of
Fig. 4.13) before reaching the whiTe. This value determines whether the program’s flow of
control should enter the body of the whiTe. If the condition is false, the user entered the sen-
tinel value, so the body does not execute (i.e., no grades were entered). If; on the other hand,
the condition is true, the body begins execution, and the loop adds the grade value to the
total (line 58) and increments gradeCounter (line 59). Then lines 62-63 in the loop’s body
prompt for and input the next value from the user. Next, program control reaches the closing
right brace (3) of the while’s body in line 64, so execution continues with the test of the
while’s condition (line 56). The condition uses the most recent grade input by the user to
determine whether the loop’s body should execute again. The value of variable grade is al-
ways input from the user immediately before the program tests the while condition. This
allows the program to determine whether the value just input is the sentinel value before the
program processes that value (i.e., adds it to the total and increments gradeCounter). If the
sentinel value is input, the loop terminates, and the program does not add the value —1 to
the total.

After the loop terminates, the if...e1se statement (lines 67-79) executes. The con-
dition in line 67 determines whether any grades were entered. If none were, the ese part
(lines 78-79) of the if...eTse statement executes and displays the message "No grades
were entered” and the member function returns control to the calling function.

Notice the block in the while loop in Fig. 4.13. Without the braces, the last three
statements in the body of the loop would fall outside the loop, causing the computer to
interpret this code incorrectly, as follows:

// loop until sentinel value read from user

while (grade !=)
total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
cout << ;
cin >> grade;

This would cause an infinite loop in the program if the user did not input -1 for the first

grade (in line 53).

35 Common Programming Error 4.6

"Lz Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To

TN prevent this problem, some programmers enclose the body of every control statement in
braces, even if the body contains only a single statement.

132 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

Floating-Point Number Precision and Memory Requirements

Variables of type float represent single-precision floating-point numbers and have ap-
proximately seven significant digits on most of today’s systems. Variables of type double
represent double-precision floating-point numbers. These require twice as much memory
as float variables and provide approximately 15 significant digits on most of today’s sys-
tems—approximately double the precision of float variables. Most programmers repre-
sent floating-point numbers with type double. In fact, C++ treats all floating-point
numbers you type in a program’s source code (such as 7.33 and 0.0975) as doub1le values
by default. Such values in the source code are known as floating-point literals. See
Appendix C, Fundamental Types, for the ranges of values for floats and doubTes.

In conventional arithmetic, floating-point numbers often arise as a result of divi-
sion—when we divide 10 by 3, the result is 3.3333333..., with the sequence of 3s
repeating infinitely. The computer allocates only a fixed amount of space to hold such a
value, so clearly the stored floating-point value can be only an approximation.

375 Common Programming Error 4.7
Using floating-point numbers in a manner that assumes theyre represented exactly (e.g.,
using them in comparisons for equality) can lead to incorrect results. Floating-point num-

bers are represented only approximately.

Although floating-point numbers are not always 100 percent precise, they have
numerous applications. For example, when we speak of a “normal” body temperature of
98.6 degrees Fahrenheit, we do not need to be precise to a large number of digits. When
we read the temperature on a thermometer as 98.6, it may actually be 98.5999473210643.
Calling this number simply 98.6 is fine for most applications involving body tempera-
tures. Due to the imprecise nature of floating-point numbers, type double is preferred over
type float, because double variables can represent floating-point numbers more accu-
rately. For this reason, we use type double throughout the book.

Converting Between Fundamental Types Explicitly and Implicitly

The variable average is declared to be of type double (line 70 of Fig. 4.13) to capture the
fractional result of our calculation. However, total and gradeCounter are both integer
variables. Recall that dividing two integers results in integer division, in which any frac-
tional part of the calculation is lost truncated). In the following statement:

double average = total / gradeCounter;

the division occurs first—the result’s fractional part is lost before it’s assigned to average.
To perform a floating-point calculation with integers, we must create femporary floating-
point values. C++ provides the static_cast operator to accomplish this task. Line 70 uses
the cast operator static_cast<double>(total) to create a femporary floating-point copy
of its operand in parentheses—total. Using a cast operator in this manner is called explic-
it conversion. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version
of total) divided by the integer gradeCounter. The compiler knows how to evaluate only
expressions in which the operand types are identical. To ensure that the operands are of the
same type, the compiler performs an operation called promotion (also called implicit con-
version) on selected operands. For example, in an expression containing values of data types
int and double, C++ promotes int operands to double values. In our example, we are

4.9 Formulating Algorithms: Sentinel-Controlled Repetition 133

treating total as a double (by using the static_cast operator), so the compiler promotes
gradeCounter to double, allowing the calculation to be performed—the result of the
floating-point division is assigned to average. In Chapter 6, Functions and an Introduc-
tion to Recursion, we discuss all the fundamental data types and their order of promotion.
Cast operators are available for use with every data type and with class types as well.
The static_cast operator is formed by following keyword static_cast with angle
brackets (< and >) around a data-type name. The static_cast operator is a unary oper-
ator—an operator that takes only one operand. In Chapter 2, we studied the binary arith-
metic operators. C++ also supports unary versions of the plus (+) and minus (-) operators,
so that you can write such expressions as -7 or +5. Cast operators have higher precedence
than other unary operators, such as unary + and unary -. This precedence is higher than
that of the multiplicative operators *, / and %, and lower than that of parentheses. We indi-
cate the cast operator with the notation static_cast<spe>() in our precedence charts.

Formatting for Floating-Point Numbers

The formatting capabilities in Fig. 4.13 are discussed here briefly and explained in depth
in Chapter 13, Stream Input/Output: A Deeper Look. The call to setprecision in line
75 (with an argument of 2) indicates that doubTe variable average should be printed with
two digits of precision to the right of the decimal point (e.g., 92.37). This call is referred
to as a parameterized stream manipulator (because of the 2 in parentheses). Programs that
use these calls must contain the preprocessing directive (line 5)

#include <iomanip>

The manipulator end1 is a nonparameterized stream manipulator (because it isn’t fol-
lowed by a value or expression in parentheses) and does 7ot require the <iomanip> header.
If the precision is not specified, floating-point values are normally output with six digits of
precision (i.e., the default precision on most of today’s systems), although we’ll see an ex-
ception to this in a moment.

The stream manipulator fixed (line 75) indicates that floating-point values should be
output in so-called fixed-point format, as opposed to scientific notation. Scientific nota-
tion is a way of displaying a number as a floating-point number between the values of 1.0
and 10.0, multiplied by a power of 10. For instance, the value 3,100.0 would be displayed
in scientific notation as 3.1 x 103. Scientific notation is useful when displaying values that
are very large or very small. Formatting using scientific notation is discussed further in
Chapter 13. Fixed-point formatting, on the other hand, is used to force a floating-point
number to display a specific number of digits. Specifying fixed-point formatting also
forces the decimal point and trailing zeros to print, even if the value is a whole number
amount, such as 88.00. Without the fixed-point formatting option, such a value prints in
C++ as 88 without the trailing zeros and without the decimal point. When the stream
manipulators fixed and setprecision are used in a program, the printed value is rounded
to the number of decimal positions indicated by the value passed to setprecision (e.g.,
the value 2 in line 75), although the value in memory remains unaltered. For example, the
values 87.946 and 67.543 are output as 87.95 and 67.54, respectively. It’s also possible to
force a decimal point to appear by using stream manipulator showpoint. If showpoint is
specified without fixed, then trailing zeros will not print. Like end1, stream manipulators
fixed and showpoint do not use parameters, nor do they require the <iomanip> header.
Both can be found in header <iostreams.

134 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

Lines 75 and 76 of Fig. 4.13 output the class average rounded to the nearest hun-
dredth and with exactly two digits to the right of the decimal point. The parameterized
stream manipulator (line 75) indicates that variable average’s value should be displayed
with zwo digits of precision to the right of the decimal point—as indicated by setpreci-
sion(2). The three grades entered during the execution of the program in Fig. 4.14 total
257, which yields the average 85.666... and prints with rounding as 85.67.

A Note About Unsigned Integers

In Fig. 4.9, line 46 declared the variable gradeCounter as an unsigned int because it can
assume only the values from 1 through 11 (11 terminates the loop), which are all positive
values. In general, counters that should store only non-negative values should be declared
with unsigned types. Variables of unsigned integer types can represent values from 0 to
approximately swice the positive range of the corresponding signed integer types. You can
determine your platform’s maximum unsigned int value with the constant UINT_MAX
from <cTimits>.

Figure 4.9 could have also declared as unsigned int the variables grade, total and
average. Grades are normally values from 0 to 100, so the total and average should each
be greater than or equal to 0. We declared those variables as ints because we can’t control
what the user actually enters—the user could enter negarive values. Worse yet, the user
could enter a value that’s not even a number. (We’ll show how to deal with such erroneous
inputs later in the book.)

Sometimes sentinel-controlled loops use intentionally invalid values to terminate a
loop. For example, in line 56 of Fig. 4.13, we terminate the loop when the user enters the
sentinel -1 (an invalid grade), so it would be improper to declare variable grade as an
unsigned int. As you'll see, the end-of-file (EOF) indicator—which is introduced in the
next chapter and is often used to terminate sentinel-controlled loops—is also normally
implemented internally in the compiler as a negative number.

4.10 Formulating Algorithms: Nested Control
Statements

For the next example, we once again formulate an algorithm by using pseudocode and top-
down, stepwise refinement, and write a corresponding C++ program. We've seen that con-
trol statements can be stacked on top of one another (in sequence). Here, we examine the
only other structured way control statements can be connected, namely, by nesting one
control statement within another. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, ten of the students who completed this course took the exam.
The college wants to know how well its students did on the exam. Youve been asked to
write a program to summarize the results. Youve been given a list of these 10 students.
Next to each name is written a 1 if the student passed the exam or a 2 if the student
Jailed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter result” each
time the program requests another test result.

2. Count the number of test results of each type.

4.10 Formulating Algorithms: Nested Control Statements 135

3. Display a summary of the test results indicating the number of students who passed and
the number who failed.

4. If' more than eight students passed the exam, print the message “Bonus to instructor!”
After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop
can be used because the number of test results is known in advance.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine whether the number is a 1 or a 2. For sim-
plicity, we test only for a 1 in our algorithm. If the number is not a 1, we assume
thatit’s a 2. (Please be sure to do Exercise 4.20, which considers the consequences
of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number of students
who failed the exam.

4. After the program has processed all the results, it must decide whether more than
eight students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide whether a bonus should be paid

Once again, it’s important to emphasize that the top is a complete representation of the
program, but several refinements are likely to be needed before the pseudocode evolves
naturally into a C++ program.

Our first refinement is

Initialize variables
Input the 10 exam results, and count passes and failures
Display a summary of the exam results and decide whether a bonus should be paid

Here, too, even though we have a complere representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process and a
variable is needed to store the user input.

The pseudocode statement

Initialize variables
can be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Notice that only the counters are initialized at the start of the algorithm.
The pseudocode statement

Input the 10 exam results, and count passes and failures

136 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

requires a loop that successively inputs the result of each exam. Here it’s known in advance
that there are precisely 10 exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop), an i f...e1se statement will determine whether
each exam result is a pass or a failure and will increment the appropriate counter. The re-
finement of the preceding pseudocode statement is then

While student counter is less than or equal to 10
Prompt the user to enter the next exam result
Input the next exam result

If the student passed
Add one to passes
Else
Add one to failures

Add one to student counter

We use blank lines to isolate the If... Else control structure, which improves readability.
The pseudocode statement

Display a summary of the exam results and decide whether a bonus should be paid
can be refined as follows:

Display the number of passes
Display the number of failures

If more than eight students passed
Display “Bonus to instructor!”

The complete second refinement appears in Fig. 4.15. Blank lines set off the While struc-
ture for readability. This pseudocode is now sufficiently refined for conversion to C++.

I Initialize passes to zero
2 [nitialize failures to zero
3 Initialize student counter to one
4
5 While student counter is less than or equal ro 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed
10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15

16 Display the number of passes
17 Display the number of failures

Fig. 4.15 | Pseudocode for examination-results problem. (Part | of 2.)

4.10 Formulating Algorithms: Nested Control Statements 137

18
19 If'more than eight students passed
20 Display “Bonus to instructor!”

Fig. 4.15 | Pseudocode for examination-results problem. (Part 2 of 2.)

Conversion to Class Analysis

The program that implements the pseudocode algorithm is shown in Fig. 4.16. This ex-
ample does not contain a class—it contains just a source code file with function main per-
forming all the application’s work. In this chapter and in Chapter 3, you’ve seen examples
consisting of one class (including the header and source code files for this class), as well as
another source code file testing the class. This source code file contained function main,
which created an object of the class and called its member functions. Occasionally, when
it does not make sense to try to create a reusable class to demonstrate a concept, we'll use
an example contained entirely within the main function of a single source code file.

Lines 9—11 and 18 declare and initialize the variables used to process the examination
results. Looping programs sometimes require initialization at the beginning of each repe-
tition; such reinitialization would be performed by assignment statements rather than in
declarations or by moving the declarations inside the loop bodies.

1 // Fig. 4.16: fig04_16.cpp

2 // Examination-results problem: Nested control statements.

3 #include <iostream>

4 using namespace std;

5

6 1int main()

7 {

8 // initializing variables in declarations

9 unsigned int passes = 0; // number of passes

10 unsigned int failures = 0; // number of failures

11 unsigned int studentCounter = 1; // student counter

12

13 // process 10 students using counter-controlled Toop

14 while (studentCounter <= 10)

15 {

16 // prompt user for input and obtain value from user

17 cout << "Enter result (1 = pass, 2 = fail): ";

18 int result = 0; // one exam result (1 = pass, 2 = fail)
19 cin >> result; // input result
20
21 // if...else nested in while
22 if (result == 1) // if result is 1,
23 passes = passes + 1; // increment passes;
24 else // else result is not 1, so
25 failures = failures + 1; // increment failures
26
27 // increment studentCounter so loop eventually terminates
28 studentCounter = studentCounter + 1;
29 } // end while

Fig. 4.16 | Examination-results problem: Nested control statements. (Part | of 2.)

138 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

30

31 // termination phase; display number of passes and failures

32 cout << << passes << << failures << endTl;
33

34 // determine whether more than eight students passed

35 if (passes > &)

36 cout << << endl;

37 } // end main

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Passed 6

Failed 4

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed 9

Failed 1

Bonus to instructor!

Fig. 4.16 | Examination-results problem: Nested control statements. (Part 2 of 2.)

The while statement (lines 14-29) loops 10 times. Each iteration inputs and pro-
cesses one exam result. The if...e1se statement (lines 22-25) for processing each result is
nested in the while statement. If the result is 1, the if...else statement increments
passes; otherwise, it assumes the result is 2 and increments failures. Line 28 incre-
ments studentCounter before the loop condition is tested again in line 15. After 10 values
have been input, the loop terminates and line 32 displays the number of passes and the
number of failures. The if statement in lines 35-36 determines whether more than
eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

Figure 4.16 shows the input and output from two sample executions of the program.
At the end of the second sample execution, the condition in line 35 is true—more than
eight students passed the exam, so the program outputs a message indicating that the
instructor should receive a bonus.

4.11 Assignment Operators 139

C++11 List Initialization
C++11 introduces a new variable initialization syntax. List initialization (also called uni-

form initialization) enables you to use one syntax to initialize a variable of any type. Con-
sider line 11 of Fig. 4.16

unsigned 1int studentCounter ;

In C++11, you can write this as

Il
-~
—

unsigned int studentCounter
or
unsigned int studentCounter{ 1 };

The braces ({ and }) represent the /list initializer. For a fundamental-type variable, you
place only one value in the list initializer. For an object, the list initializer can be a comma-
separated list of values that are passed to the object’s constructor. For example,
Exercise 3.14 asked you to create an EmpTloyee class that could represent an employee’s first
name, last name and salary. Assuming the class defines a constructor that receives strings
for the first and last names and a doub1e for the salary, you could initialize EmpToyee ob-
jects as follows:

Employee employeel{ , 5 IE
Employee employee2 = { , ; it

For fundamental-type variables, list-initialization syntax also prevents so-called nar-
rowing conversions that could result in data loss. For example, previously you could write

int x = ;

which attempts to assign the double value 12.7 to the int variable x. A double value is
converted to an int, by #runcating the floating-point part (.7), which results in a /oss of
information—a narrowing conversion. The actual value assigned to x is 12. Many compilers
generate a warning for this statement, but still allow it to compile. However, using list ini-
tialization, as in

int x = { };
or
int x{ };

yields a compilation error, thus helping you avoid a potentially subtle logic error. For ex-
ample, Apple’s Xcode LLVM compiler gives the error

Type 'double' cannot be narrowed to 'int' in initializer Tist

We'll discuss additional list-initializer features in later chapters.

4.11 Assignment Operators

C++ provides several assignment operators for abbreviating assignment expressions. For
example, the statement

C=c+ 3;
can be abbreviated with the addition assignment operator += as

C += 3;

3

140 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

which adds the value of the expression on the operator’s right to the value of the variable on
the operator’s left and stores the result in the left-side variable. Any statement of the form

variable = variable operator expression;

in which the same variable appears on both sides of the assignment operator and operaror
is one of the binary operators +, -, *, /, or % (or a few others we'll discuss later in the text),
can be written in the form

variable operator= expression;

Thus the assignment c += 3 adds 3 to c. Figure 4.17 shows the arithmetic assignment op-
erators, sample expressions using these operators and explanations.

Assignment Sample

operator expression Explanation Assigns
Assume: int ¢ = 2, d =5, e=4, f=6, g=12;

+= C += 7 c=c+ 7/ 10toc
— d-=4 d=d- 4 ltod

H= e *=§ e=e* 5 0toe
= f /=3 f=f/: 2tof

%= g %= 9 g=9%9 itog

Fig. 4.17 | Arithmetic assignment operators.

4.12 Increment and Decrement Operators

In addition to the arithmetic assignment operators, C++ also provides two unary operators
for adding 1 to or subtracting 1 from the value of a numeric variable. These are the unary
increment operator, ++, and the unary decrement operator, --, which are summarized in
Fig. 4.18. A program can increment by 1 the value of a variable called c using the incre-
ment operator, ++, rather than the expression ¢ = ¢ + 1 or ¢ += 1. An increment or decre-
ment operator that’s prefixed to (placed before) a variable is referred to as the prefix
increment or prefix decrement operator, respectively. An increment or decrement opera-
tor that’s postfixed to (placed affer) a variable is referred to as the postfix increment or
postfix decrement operator, respectively.

Sample

Operator Called expression Explanation

++ preincrement ++a Increment a by 1, then use the new value
of a in the expression in which a resides.

o+ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

Fig. 4.18 | Increment and decrement operators. (Part | of 2.)

4.12 Increment and Decrement Operators 141

Sample

Operator Called expression Explanation

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.18 | Increment and decrement operators. (Part 2 of 2.)

Using the prefix increment (or decrement) operator to add (or subtract) 1 from a vari-
able is known as preincrementing (or predecrementing) the variable. Preincrementing (or
predecrementing) causes the variable to be incremented (decremented) by 1, then the new
value of the variable is used in the expression in which it appears. Using the postfix incre-
ment (or decrement) operator to add (or subtract) 1 from a variable is known as postin-
crementing (or postdecrementing) the variable. Postincrementing (or postdecrementing)
causes the current value of the variable to be used in the expression in which it appears,
then the variable’s value is incremented (decremented) by 1.

Unlike binary operators, the unary increment and decrement operators should be placed
next to their operands, with no intervening spaces.

i% Good Programming Practice 4.4
- 4
|

Figure 4.19 demonstrates the difference between the prefix increment and postfix incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

1 // Fig. 4.19: fig04_19.cpp

2 // Preincrementing and postincrementing.

3 #include <iostream>

4 using namespace std;

5

6 1int mainQ

7 {

8 // demonstrate postincrement

9 int ¢ = 5; // assign 5 to c

10 cout << ¢ << endl; // print 5

1 cout << c++ << endl; // print 5 then postincrement
12 cout << ¢ << endl; // print 6

13

14 cout << endl; // skip a Tine

15

16 // demonstrate preincrement

17 c=5; // assign 5 to c

18 cout << ¢ << endl; // print 5

19 cout << ++Cc << endl; // preincrement then print 6
20 cout << ¢ << endl; // print 6

21 } // end main

Fig. 4.19 | Preincrementing and postincrementing. (Part | of 2.)

142 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

oo wuv

Fig. 4.19 | Preincrementing and postincrementing. (Part 2 of 2.)

Line 9 initializes c to 5, and line 10 outputs c’s initial value. Line 11 outputs the value
of the expression c++. This postincrements the variable ¢, so ¢’s original value (5) is output,
then ¢’s value is incremented. Thus, line 11 outputs ¢’s initial value (5) again. Line 12 out-
puts ¢’s new value (6) to prove that the variable’s value was incremented in line 11.

Line 17 resets s value to 5, and line 18 outputs that value. Line 19 outputs the value
of the expression ++c. This expression preincrements ¢, so its value is incremented, then
the new value (6) is output. Line 20 outputs c’s value again to show that the value of ¢ is
still 6 after line 19 executes.

The arithmetic assignment operators and the increment and decrement operators can
be used to simplify program statements. The three assignment statements in Fig. 4.16

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
studentCounter += 1;

with prefix increment operators as

++passes;
++failures;
++studentCounter;

or with postfix increment operators as

passes++;
failures++;
studentCounter++;

When you increment (++) or decrement (--) an integer variable in a statement by
itself, the preincrement and postincrement forms have the same logical effect, and the pre-
decrement and postdecrement forms have the same logical effect. It’s only when a variable
appears in the context of a larger expression that preincrementing the variable and postin-
crementing the variable have different effects (and similarly for predecrementing and post-
decrementing).

5 Common Programming Error 4.8
' 'z Attempting to use the increment or decrement operator on an expression other than a mod-
- ifiable variable name, e.g., writing ++(x + 1), is a syntax error.

4.13 Wrap-Up 143

Figure 4.20 shows the precedence and associativity of the operators introduced to this
point. The operators are shown top-to-bottom in decreasing order of precedence. The
second column indicates the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators preincrement (++), predec-
rement (--), plus (+) and minus (-), and the assignment operators =, +=, -=, *=, /= and %=
associate from right to lefi. All other operators in Fig. 4.20 associate from /leff to right. The
third column names the various groups of operators.

Operators Associativity

O left to right primary
[See caution in Fig. 2.10 regard-
ing grouping parentheses.]

++ -- static_cast<gpe-() left to right postfix

+ -+ - right to left unary (prefix)
/% left to right multiplicative

+ - left to right additive

<< > left to right insertion/extraction
g = = os= left to right relational

= I= left to right equality

23 right to left conditional

= 4= -= *= /= % righttoleft assignment

Fig. 4.20 | Operator precedence for the operators encountered so far in the text.

4.13 Wrap-Up

This chapter presented basic problem-solving techniques that you use in building classes
and developing member functions for these classes. We demonstrated how to construct an
algorithm (i.e., an approach to solving a problem) in pseudocode, then how to refine the
algorithm through pseudocode development, resulting in C++ code that can be executed
as part of a function. You learned how to use top-down, stepwise refinement to plan out
the actions that a function must perform and the order in which it must perform them.
You learned that only three types of control structures—sequence, selection and rep-
etition—are needed to develop any algorithm. We demonstrated two of C++’s selection
statements—the 1f single-selection statement and the if...e1se double-selection state-
ment. The if statement is used to execute a set of statements based on a condition—if the
condition is true, the statements execute; if it isn’t, the statements are skipped. The
if...e1se double-selection statement is used to execute one set of statements if a condition
is true, and another set of statements if the condition is false. We then discussed the while
repetition statement, where a set of statements are executed repeatedly as long as a condi-
tion is true. We used control-statement stacking to total and compute the average of a set
of student grades with counter- and sentinel-controlled repetition, and we used control-
statement nesting to analyze and make decisions based on a set of exam results. We intro-
duced assignment operators, which can be used for abbreviating statements. We presented

144 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

the increment and decrement operators, which can be used to add or subtract the value 1
from a variable. In the next chapter, we continue our discussion of control statements,
introducing the for, do...while and switch statements.

Summary
Section 4.2 Algorithms

* An algorithm (p. 105) is a procedure for solving a problem in terms of the actions to execute and
the order in which to execute them.

* Specifying the order in which statements execute in a program is called program control (p. 1006).

Section 4.3 Pseudocode

* Pseudocode (p. 106) helps you think out a program before writing it in a programming language.

Section 4.4 Control Structures
* An activity diagram models the workflow (also called the activity, p. 108) of a software system.

e Activity diagrams (p. 107) are composed of symbols, such as action state symbols, diamonds and
small circles, that are connected by transition arrows representing the flow of the activity.

¢ Like pseudocode, activity diagrams help you develop and represent algorithms.

* An action state is represented as a rectangle with its left and right sides replaced with arcs curving
outward. The action expression (p. 108) appears inside the action state.

e The arrows in an activity diagram represent transitions (p. 108), which indicate the order in
which the actions represented by action states occur.

* The solid circle in an activity diagram represents the initial state (p. 108)—the beginning of the
workflow before the program performs the modeled actions.

* The solid circle surrounded by a hollow circle that appears at the bottom of the activity diagram
represents the final state (p. 108)—the end of the workflow after the program performs its actions.

* Rectangles with the upper-right corners folded over are called notes (p. 108) in the UML. A dot-
ted line (p. 108) connects each note with the element that the note describes.

e There are three types of control structures (p. 107)—sequence, selection and repetition.
* The sequence structure is built in—Dby default, statements execute in the order they appear.

* A selection structure chooses among alternative courses of action.

Section 4.5 if Selection Statement
* The if single-selection statement (p. 110) either performs (selects) an action if a condition is
true, or skips the action if the condition is false.

* A decision symbol (p. 111) in an activity diagram indicates that a decision is to be made. The
workflow follows a path determined by the associated guard conditions. Each transition arrow
emerging from a decision symbol has a guard condition. If a guard condition is true, the work-
flow enters the action state to which the transition arrow points.

Section 4.6 if...else Double-Selection Statement
* The if...e1se double-selection statement (p. 112) performs (selects) an action if a condition is
true and performs a different action if the condition is false.

Summary 145

* To include several statements in an 1f’s body (or the body of an e1se for an i f...e1se statement),
enclose the statements in braces ({ and }). A set of statements contained in braces is called a block
(p. 115). A block can be placed anywhere in a program that a single statement can be placed.

* A null statement (p. 116), indicating that no action is to be taken, is indicated by a semicolon (;).

Section 4.7 while Repetition Statement
* A repetition statement (p. 116) repeats an action while some condition remains true.

e A UML merge symbol (p. 117) has two or more transition arrows pointing to the diamond and
only one pointing from it, to indicate multiple activity flows merging to continue the activity.

Section 4.8 Formulating Algorithms: Counter-Controlled Repetition
* Counter-controlled repetition (p. 118) is used when the number of repetitions is known before
a loop begins executing, i.e., when there is definite repetition.

* Adding integers can result in a value that’s too large to store in an int variable. This is known as
arithmetic overflow and causes unpredictable runtime behavior.

e The maximum and minimum values that can be stored in an int variable are represented by the
constants INT_MAX and INT_MIN, respectively, from the header <cTimits>.

e It’s considered a good practice to ensure that arithmetic calculations will not overflow before you
perform the calculation. In industrial-strength code, you should perform checks for all calcula-
tions that can result on overflow or underflow.

Section 4.9 Formulating Algorithms: Sentinel-Controlled Repetition
e Top-down, stepwise refinement (p. 125) is a process for refining pseudocode by maintaining a
complete representation of the program during each refinement.

e Sentinel-controlled repetition (p. 126) is used when the number of repetitions is not known be-
fore a loop begins executing, i.e., when there is indefinite repetition.

e A value that contains a fractional part is referred to as a floating-point number and is represented
approximately by data types such as float and double (p. 127).

* The cast operator static_cast<double> (p. 132) can be used to create a temporary floating-
point copy of its operand.

* Unary operators (p. 133) take only one operand; binary operators take two.

* The parameterized stream manipulator setprecision (p. 133) indicates the number of digits of
precision that should be displayed to the right of the decimal point.

* The stream manipulator fixed (p. 133) indicates that floating-point values should be output in
so-called fixed-point format, as opposed to scientific notation.

e In general, any integer variable that should store only non-negative values should be declared
with unsigned before the integer type. Variables of unsigned types can represent values from 0
to approximately double the positive range of the corresponding signed integer type.

* You can determine your platform’s maximum unsigned int value with the constant UINT_MAX
from <climits>.

Section 4.10 Formulating Algorithms: Nested Control Statements
* A nested control statement (p. 134) appears in the body of another control statement.

e C++11 introduces the new list initialization for initializing variables in their declarations, as in
int studentCounter = { 1 };
or

int studentCounter{ 1 };

146

Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

* The braces ({ and }) represent the list initializer. For a fundamental-type variable, you place only
one value in the list initializer. For an object, the list initializer can be a comma-separated list of
values that are passed to the object’s constructor.

¢ For fundamental-type variables, list-initialization syntax also prevents so-called narrowing con-
versions that could result in data loss.

Section 4.11 Assignment Operators
e The arithmetic operators +=, -=, *=, /= and %= abbreviate assignhment expressions (p. 140).

Section 4.12 Increment and Decrement Operators

* The increment (++) and decrement (--) operators (p. 140) increment or decrement a variable by
1, respectively. If the operator is prefixed to the variable, the variable is incremented or decre-
mented by 1 first, then its new value is used in the expression in which it appears. If the operator
is postfixed to the variable, the variable is first used in the expression in which it appears, then
the variable’s value is incremented or decremented by 1.

Self-Review Exercises

4.1

4.2
4.3

4.4

4.5

4.6

4.7

Answer each of the following questions.

a)
b)

o)
d)

All programs can be written in terms of three types of control structures: ,
and

The selection statement is used to execute one action when a condition is true
or a different action when that condition is false.

Repeating a set of instructions a specific number of times is called repetition.
When it isn’t known in advance how many times a set of statements will be repeated,
a(n) value can be used to terminate the repetition.

Write four different C++ statements that each add 1 to integer variable x.

Werite C++ statements to accomplish each of the following:

a)

In one statement, assign the sum of the current value of x and y to z and postincrement
the value of x.

Determine whether the value of the variable count is greater than 10. If it is, print
"Count is greater than 10."

Predecrement the variable x by 1, then subtract it from the variable total.

Calculate the remainder after q is divided by divisor and assign the result to q. Write
this statement two different ways.

Werite C++ statements to accomplish each of the following tasks.

a)
b)
<)
d)

Declare variable sum to be of type unsigned int and initialize it to 0.
Declare variable x to be of type unsigned int and initialize it to 1.
Add variable x to variable sum and assign the result to variable sum.
Print "The sum is: " followed by the value of variable sum.

Combine the statements that you wrote in Exercise 4.4 into a program that calculates and
prints the sum of the integers from 1 to 10. Use the while statement to loop through the calculation
and increment statements. The loop should terminate when the value of x becomes 11.

State the values of each of these unsigned int variables after the calculation is performed.
Assume that, when each statement begins executing, all variables have the integer value 5.

a)
b)

product *= X++;
quotient /= ++X;

Write single C++ statements or portions of statements that do the following:

a)

Input unsigned int variable x with cin and >>.

Answers to Self-Review Exercises 147

b) Inputunsigned int variable y with cin and >>.

c) Declare unsigned int variable i and initialize it to 1.

d) Declare unsigned int variable power and initialize it to 1.
¢) Multiply variable power by x and assign the result to power.
f) Preincrement variable i by 1.

g) Determine whether 1 is less than or equal to y.

h) Output integer variable power with cout and <<.

4.8 Write a C++ program that uses the statements in Exercise 4.7 to calculate x raised to the y
power. The program should have a while repetition statement.

4.9 Identify and correct the errors in each of the following:
a) while (¢ <=5)
{
product *= c;
+HC;
b) cin << value;

c) if (gender == 1)
cout << << endl;
else;
cout << << endT;

4.10 What's wrong with the following while repetition statement?

while (z >=)
sum += z;

Answers to Self-Review Exercises

4.1 a) Sequence, selection and repetition. b) if...else. c) Counter-controlled or definite.
d) Sentinel, signal, flag or dummy.
4.2 X=X+ 1;

X += 1;

++X;

X++;

4.3 Q) Z = X++ + Y3
b) if (count >)
cout << << endl;
c) total -= --x;
d) q %= divisor;
g =q % divisor;
4.4 a) unsigned int sum = 0;
b) unsigned int x = 1;
C) sum += X;
or
sum = sum + X;
d) cout << << sum << endl;

4.5 See the following code:

| // Exercise 4.5 Solution: ex04_05.cpp
2 // Calculate the sum of the integers from 1 to 10.
3 #include <jostream>

148 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

using namespace std;

4
5
6 1int mainQ)
7
8

{
unsigned int sum = 0; // stores sum of integers 1 to 10

9 unsigned int x = 1; // counter
10
11 while (x <= 10) // Toop 10 times
12 {
13 sum += x; // add x to sum
14 ++X; // increment x
15 } // end while
16
17 cout << "The sum is: " << sum << endl;

18 } // end main

The sum is: 55

4.6 a) product = 25, x =
b) quotient = 0, x = 6;

|
(2]

4.7 a) cin >> x;
b) cin >> y;
c) unsigned int i = 1;
d) unsigned int power = 1;
€) power *= X;
or
power = power * X;
f) ++i;
g if (i <=y)

h) cout << power << endl;

4.8 See the following code:

| // Exercise 4.8 Solution: ex04_08.cpp

2 // Raise x to the y power.

3 #include <iostream>

4 using namespace std;

5

6 int mainQ)

7 {

8 unsigned int i = 1; // initialize i to begin counting from 1
9 unsigned int power = 1; // initialize power

10

11 cout << "Enter base as an integer: "; // prompt for base
12 unsigned int x; // base

13 cin >> x; // input base

14

15 cout << "Enter exponent as an integer: "; // prompt for exponent
16 unsigned int y; // exponent

17 cin >> y; // input exponent

18

19 // count from 1 to y and multiply power by x each time
20 while (i <=y)
21 {
22 power *= X;
23 ++1;
24 } // end while

Exercises

149

25
26 cout << power << endl; // display result
27 } // end main

Enter base as an integer: 2
Enter exponent as an integer: 3
8

4.9 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement c++;.
b) Error: Used stream insertion instead of stream extraction.
Correction: Change << to >>.

©) Error: Semicolon after else is a logic error. The second output statement always executes.

Correction: Remove the semicolon after else.

4.10 The value of the variable z is never changed in the while statement. Therefore, if the loop-
continuation condition (z >= 0) is initially true, an infinite loop is created. To prevent the infinite

loop, z must be decremented so that it eventually becomes less than 0.

Exercises

4.11 (Correct the Code Errors) Identify and correct the error(s) in each of the following:
a) if (age >= E
cout << << endl;
else
cout <<
b) if (age >=)
cout << << endl;
else;
cout <<
c) unsigned int x = 1;
unsigned int total;

while (x <=)
{
total += Xx;
+4X;
}

d) while (x <=)
total += Xx;
++X;

e) while (y > 0)

{
cout << y << endl;
++Y;

}

4.12 (What Does this Program Do?) What does the following program print?

// Exercise 4.12: ex04_12.cpp

// What does this program print?
#include <jostream>

using namespace std;

int main(Q)

{

N oD WN =

150 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

8 unsigned int y = 0; // declare and initialize y

9 unsigned int x = 1; // declare and initialize x

10 unsigned int total = 0; // declare and initialize total
11

12 while (x <=) // loop 10 times

13 {

14 y = x * x; // perform calculation

15 cout << y << endl; // output result

16 total += y; // add y to total

17 ++x; // increment counter X

18 } // end while

19

20 cout << << total << endl; // display result

21} // end main

For Exercises 4.13—4.16, perform each of these steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a C++ program.
d) Test, debug and execute the C++ program.

4.13 (Gas Mileage) Drivers are concerned with the mileage obtained by their automobiles. One
driver has kept track of several trips by recording miles driven and gallons used for each trip. Devel-
op a C++ program that uses a while statement to input the miles driven and gallons used for each
trip. The program should calculate and display the miles per gallon obtained for each trip and print
the combined miles per gallon obtained for all tankfuls up to this point.

Enter miles driven (-1 to quit): 287
Enter gallons used: 13

MPG this trip: 22.076923

Total MPG: 22.076923

Enter miles driven (-1 to quit): 200
Enter gallons used: 10

MPG this trip: 20.000000

Total MPG: 21.173913

Enter the miles driven (-1 to quit): 120
Enter gallons used: 5

MPG this trip: 24.000000

Total MPG: 21.678571

Enter the miles used (-1 to quit): -1

4.14 (Credit Limits) Develop a C++ program that will determine whether a department-store
customer has exceeded the credit limit on a charge account. For each customer, the following facts
are available:

a) Account number (an integer)

b) Balance at the beginning of the month

¢) Total of all items charged by this customer this month

d) Total of all credits applied to this customer's account this month

e) Allowed credit limit

The program should use a while statement to input each of these facts, calculate the new balance

(= beginning balance + charges — credits) and determine whether the new balance exceeds the cus-
tomer’s credit limit. For those customers whose credit limit is exceeded, the program should display
the customer’s account number, credit limit, new balance and the message “Credit Limit Exceeded.”

Exercises 151

Enter account number (or -1 to quit): 100
Enter beginning balance: 5394.78

Enter total charges: 1000.00

Enter total credits: 500.00

Enter credit T1imit: 5500.00

New balance is 5894.78

Account: 100
Credit Timit: 5500.00
Balance: 5894.78

Credit Limit Exceeded.

Enter Account Number (or -1 to quit): 200
Enter beginning balance: 1000.00

Enter total charges: 123.45

Enter total credits: 321.00

Enter credit Timit: 1500.00

New balance is 802.45

Enter Account Number (or -1 to quit): -1

4.15 (Sales Commission Calculator) A large company pays its salespeople on a commission basis.
The salespeople each receive $200 per week plus 9% of their gross sales for that week. For example,
a salesperson who sells $5000 worth of chemicals in a week receives $200 plus 9% of $5000, or a
total of $650. Develop a C++ program that uses a while statement to input each salesperson’s gross
sales for last week and calculates and displays that salesperson’s earnings. Process one salesperson’s
figures at a time.

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 6000.00
Salary is: $740.00

Enter sales in dollars (-1 to end): 7000.00
Salary 1is: $830.00

Enter sales in dollars (-1 to end): -1

4.16 (Salary Calculator) Develop a C++ program that uses a while statement to determine the
gross pay for cach of several employees. The company pays “straight time” for the first 40 hours
worked by each employee and pays “time-and-a-half” for all hours worked in excess of 40 hours.
You are given a list of the employees of the company, the number of hours each employee worked
last week and the hourly rate of each employee. Your program should input this information for
each employee and should determine and display the employee’s gross pay.

Enter hours worked (-1 to end): 39
Enter hourly rate of the employee ($00.00): 10.00
Salary is $390.00

Enter hours worked (-1 to end): 40
Enter hourly rate of the employee ($00.00): 10.00
Salary is $400.00

Enter hours worked (-1 to end): 41
Enter hourly rate of the employee ($00.00): 10.00
Salary is $415.00

Enter hours worked (-1 to end): -1

152 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

4.17 (Find the Largest) The process of finding the largest number (i.e., the maximum of a group
of numbers) is used frequently in computer applications. For example, a program that determines
the winner of a sales contest inputs the number of units sold by each salesperson. The salesperson
who sells the most units wins the contest. Write a C++ program that uses a while statement to de-
termine and print the largest number of 10 numbers input by the user. Your program should use
three variables, as follows:

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have Ev)een processed).

number: The current number input to the program.

largest: The largest number found so far.

4.18 (Tabular Outputr) Write a C++ program that uses a while statement and the tab escape se-
quence \t to print the following table of values:

N 10*N 100*N 1000*N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

4.19 (Find the Two Largest Numbers) Using an approach similar to that in Exercise 4.17, find
the zwo largest values among the 10 numbers. [Noze: You must input each number only once.]

4.20 (Validating User Input) The examination-results program of Fig. 4.16 assumes that any val-
ue input by the user that’s nota 1 must be a 2. Modify the application to validate its inputs. On any
input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

4.21 (What Does this Program Do?) What does the following program print?

| // Exercise 4.21: ex04_21.cpp

2 // What does this program print?

3 #include <jostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 unsigned int count = 1; // initialize count
9
10 while (count <=) // loop 10 times
11 {

12 // output Tine of text

13 cout << (count % ? :) << endl;
14 ++count; // increment count

15 } // end while

16 } // end main

4.22 (What Does this Program Do?) What does the following program print?

// Exercise 4.22: ex04_22.cpp

// What does this program print?
#include <jostream>

using namespace std;

int main(Q)

{

N oD WN =

Exercises

153

unsigned int row = ; // initialize row

while (row >=) // loop until row < 1

f unsigned int column = 1; // set column to 1 as iteration begins
while (column <=) // loop 10 times
{ cout << (row % ? :); // output

++column; // increment column
} // end inner while

--row; // decrement row
cout << endl; // begin new output Tine

} // end outer while
23} // end main

4.23

4.24

(Dangling-else Problem) State the output for each of the following when x is 9 and y is 11
and when x is 11 and y is 9. The compiler ignores the indentation in a C++ program. The C++ com-
piler always associates an else with the previous 1f unless told to do otherwise by the placement of
braces {}. On first glance, you may not be sure which if and else match, so this is referred to as
the “dangling-e1se” problem. We eliminated the indentation from the following code to make the
problem more challenging. [Hinz: Apply indentation conventions you've learned.]

a)

if (x <)

if Cy >)

cout << << endl;
else

cout << << endl;
cout << << endl;

if (x <)

{

if Cy >)

cout << << endl;
}

else

{

cout << << endl;
cout << << endl;

}

(Another Dangling-e1se Problem) Modify the following code to produce the output shown.
Use proper indentation techniques. You must not make any changes other than inserting braces. The
compiler ignores indentation in a C++ program. We eliminated the indentation from the following
code to make the problem more challenging. [Noze: It’s possible that no modification is necessary.]

if Cy==28)

if (x ==5)

cout << << endl;
else

cout << << endl;
cout << << endl;

cout << << endl;

154 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

a) Assuming x = 5andy = 8, the following output is produced.

@@eea
$$$%9
&&&&&

b) Assumingx = 5andy

8, the following output is produced.

@@eea

¢) Assumingx = 5andy

8, the following output is produced.

@@eea
&&&&&

d) Assumingx = 5andy = 7, the following output is produced. [Noze: The last three out-
put statements after the else are all part of a block.]

##H##
$$$%9
&&&&&

4.25 (Square of Asterisks) Write a program that reads in the size of the side of a square then prints
a hollow square of that size out of asterisks and blanks. Your program should work for squares of all
side sizes between 1 and 20. For example, if your program reads a size of 5, it should print

4.26 (Palindromes) A palindrome is a number or a text phrase that reads the same backward as
forward. For example, each of the following five-digit integers is a palindrome: 12321, 55555,
45554 and 11611. Write a program that reads in a five-digit integer and determines whether it’s a
palindrome. [Hinz: Use the division and modulus operators to separate the number into its individ-

ual digits.]

4.27 (Printing the Decimal Equivalent of a Binary Number) Input an integer containing only Os
and Is (i.e., a “binary” integer) and print its decimal equivalent. Use the modulus and division op-
erators to pick off the “binary” number’s digits one at a time from right to left. Much as in the dec-
imal number system, where the rightmost digit has a positional value of 1, the next digit left has a
positional value of 10, then 100, then 1000, and so on, in the binary number system the rightmost
digit has a positional value of 1, the next digit left has a positional value of 2, then 4, then 8, and so
on. Thus the decimal number 234 can be interpreted as 2 * 100 + 3 * 10 + 4 * 1. The decimal equiv-
alent of binary 1101is 1*1+0*2+1*4+1*8o0r 1 +0 + 4 + 8, or 13. [Note: To learn more
about binary numbers, refer to Appendix D.]

4.28 (Checkerboard Pattern of Asterisks) Write a program that displays the following checkerboard
pattern. Your program must use only three output statements, one of each of the following forms:

Exercises 155

cout << 5
cout << 3
cout << endl;

4.29 (Multiples of 2 with an Infinite Loop) Write a program that prints the powers of the integer
2, namely 2, 4, 8, 16, 32, 64, etc. Your while loop should not terminate (i.e., you should create an
infinite loop). To do this, simply use the keyword true as the expression for the while statement.
What happens when you run this program?

4.30 (Calculating a Circle’s Diameter, Circumference and Area) Write a program that reads the
radius of a circle (as a doubTe value) and computes and prints the diameter, the circumference and
the area. Use the value 3.14159 for 7.

4.31 What's wrong with the following statement? Provide the correct statement to accomplish
what the programmer was probably trying to do.

cout << ++(X + Yy);

4.32 (Sides of a Triangle) Write a program that reads three nonzero double values and deter-
mines and prints whether they could represent the sides of a triangle.

4.33 (Sides of a Right Triangle) Write a program that reads three nonzero integers and deter-
mines and prints whether they’re the sides of a right triangle.

4.34 (Factorial) The factorial of a nonnegative integer 7 is written 7! (pronounced “z factorial”)
and is defined as follows:
m=n-(n—1)-(n—-2)-...-1 (for values of 7 greater than 1)
and
=1 (forn=0o0rn=1).
For example, 5! =5 -4 -3 -2 - 1, which is 120. Use while statements in each of the following:
a) Write a program that reads a nonnegative integer and computes and prints its factorial.
b) Write a program that estimates the value of the mathematical constant e by using the
formula:
1 1 1
e = 1+ﬂ+i+§+”
Prompt the user for the desired accuracy of e (i.e., the number of terms in the summation).
¢) Write a program that computes the value of ¢ by using the formula

2 3
S I A
cTitntatyte

Prompt the user for the desired accuracy of ¢ (i.c., the number of terms in the summation).

4.35 (C++11 List Initializers) Write statements that use C++11 list initialization to perform each
of the following tasks:

a) Initialize the unsigned int variable studentCounter to 0.

b) Initialize the double variable initialBalance to 1000.0.

156 Chapter 4 Control Statements: Part |; Assignment, ++ and —- Operators

¢) Initialize an object of class Account which provides a constructor that receives an
unsigned int, two strings and a doub1e to initialize the object’s accountNumber, first-
Name, TastName and balance data members.

Making a Difference

4.36 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

4.37 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other precious resources. There is evidence that growth has been slowing in recent
years and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it is likely to increase this year). Write a program that calculates world population growth
cach year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

Control Statements: Part 2;
Logical Operators

Who can control his fate?
—William Shakespeare

The used key is always bright.

—Benjamin Franklin

Objectives
In this chapter you'll learn:

= The essentials of counter-
controlled repetition.

m To use for and do...while
to execute statements in a
program repeatedly.

= To implement multiple
selection using the switch
selection statement.

= How break and continue
alter the flow of control.

= To use the logical operators
to form complex conditional
expressions in control
statements.

= Toavoid the consequences of
confusing the equality and
assignment operators.

158 Chapter 5 Control Statements: Part 2; Logical Operators

5.1 Introduction 5.7 break and continue Statements
5.2 Essentials of Counter-Controlled 5.8 Logical Operators

Repetition 5.9 Confusing the Equality (==) and
5.3 for Repetition Statement Assignment (=) Operators
5.4 Examples Using the for Statement 5.10 Structured Programming Summary
5.5 do...while Repetition Statement 5.11 Wrap-Up

5.6 switch Multiple-Selection Statement

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

5.1 Introduction

In this chapter, we continue our presentation of structured programming by introducing
C++’s remaining control statements. The control statements we study here and those you
learned in Chapter 4 will help you build and manipulate objects. We continue our early
emphasis on object-oriented programming that began with a discussion of basic concepts
in Chapter 1 and extensive object-oriented code examples and exercises in Chapters 3—4.

In this chapter, we demonstrate the for, do...while and switch statements. Through
short examples using while and for, we explore counter-controlled repetition. We expand
the GradeBook class to use a switch statement to count the number of A, B, C, D and F
grades in a set of letter grades entered by the user. We introduce the break and continue
program control statements. We discuss the logical operators, which enable you to use
more powerful conditional expressions. We also examine the common error of confusing
the equality (==) and assignment (=) operators, and how to avoid it.

5.2 Essentials of Counter-Controlled Repetition

This section uses the whiTe repetition statement to formalize the elements required to per-
form counter-controlled repetition:

1. the name of a control variable (or loop counter)
2. the initial value of the control variable

3. the loop-continuation condition that tests for the final value of the control vari-
able (i.e., whether looping should continue)

4. the increment (or decrement) by which the control variable is modified each
time through the loop.

The program in Fig. 5.1 prints the numbers from 1 to 10. The declaration in line 8
names the control variable (counter), declares it to be an unsigned int, reserves space for
it in memory and sets it to an initial value of 1. Declarations that require initialization are
executable statements. In C++, it’'s more precise to call a variable declaration that also
reserves memory a definition. Because definitions are declarations, too, we’ll use the term
“declaration” except when the distinction is important.

Line 13 increments the loop counter by 1 each time the loop’s body is performed. The
loop-continuation condition (line 10) in the while statement determines whether the
value of the control variable is less than or equal to 10 (the final value for which the

5.3 for Repetition Statement 159

1 // Fig. 5.1: fig05_01.cpp

2 // Counter-controlled repetition.

3 #include <iostream>

4 using namespace std;

5

6 1int mainQ

7 {

8 unsigned int counter = 1; // declare and initialize control variable
9

10 while (counter <=) // loop-continuation condition
11 {

12 cout << counter << ;

13 ++counter; // increment control variable by 1

14 } // end while

15

16 cout << endl; // output a newline

17 } // end main

12345678910

Fig. 5.1 | Counter-controlled repetition.

condition is true). The body of this while executes even when the control variable is 10.
The loop terminates when the control variable is greater than 10 (i.e., when counteris 11).

Figure 5.1 can be made more concise by initializing counter to 0 and by replacing the
while statement with

counter = 0;

while (++counter <=) // loop-continuation condition
cout << counter << ;

This code saves a statement, because the incrementing is done in the while condition be-
fore the condition is tested. Also, the code eliminates the braces around the body of the
while, because the while now contains only one statement. Coding in such a condensed
fashion can lead to programs that are more difficult to read, debug, modify and maintain.

< Error-Prevention Tip 5.1
Floating-point values are approximate, so controlling counting loops with floating-point
~ variables can result in imprecise counter values and inaccurate tests for termination. Con-
trol counting loops with integer values. Separately, ++ and -~ can be used only with inte-
ger operands.

¥

5.3 for Repetition Statement

In addition to while, C++ provides the for repetition statement, which specifies the
counter-controlled repetition details in a single line of code. To illustrate the power of for,
let’s rewrite the program of Fig. 5.1. The result is shown in Fig. 5.2.

When the for statement (lines 10—11) begins executing, the control variable counter
is declared and initialized to 1. Then, the loop-continuation condition (line 10 between
the semicolons) counter <= 10 is checked. The initial value of counter is 1, so the condi-

160 Chapter 5 Control Statements: Part 2; Logical Operators

1 // Fig. 5.2: fig05_02.cpp

2 // Counter-controlled repetition with the for statement.
3 #include <iostream>

4 using namespace std;

5

6 1int mainQ

7 {

8 // for statement header includes initialization,

9 // Tloop-continuation condition and increment.

10 for (unsigned int counter = 1; counter <= ; ++counter)
11 cout << counter << H

12

13 cout << endl; // output a newline

14 } // end main

12345678910

Fig. 5.2 | Counter-controlled repetition with the for statement.

tion is satisfied and the body statement (line 11) prints the value of counter, namely 1.
Then, the expression ++counter increments control variable counter and the loop begins
again with the loop-continuation test. The control variable is now 2, so the final value is
not exceeded and the program performs the body statement again. This process continues
until the loop body has executed 10 times and the control variable counter is incremented
to 11—this causes the loop-continuation test to fail, so repetition terminates. The pro-
gram continues by performing the first statement after the for statement (in this case, the
output statement in line 13).

for Statement Header Components

Figure 5.3 takes a closer look at the for statement header (line 10) of Fig. 5.2. Notice that
the for statement header “does it all”—it specifies each of the items needed for counter-
controlled repetition with a control variable. If there’s more than one statement in the
body of the for, braces are required to enclose the body of the loop. Typically, for state-
ments are used for counter-controlled repetition and while statements are used for senti-
nel-controlled repetition.

Required Final value of control Required

for semicolon variable for which semicolon
keyword separator the condition is true separator
for (unsigned int counter = 1; counter <= ; ++counter)
e “ \
Control Initial value of T Increment of

Loop-continuation

- control variable
condition

variable name control variable

Fig. 5.3 | for statement header components.

5.3 for Repetition Statement 161

Off-By-One Errors
If you incorrectly wrote counter < 10 as the loop-continuation condition in Fig. 5.2, then
the loop would execute only 9 times. This is a common off-by-one error.

17 Common Programming Error 5.1

Using an incorrect relational operator or using an incorrect final value of a loop counter

- in the condition of a while or for statement can cause off-by-one errors.

Using the final value in the condition of a while or for statement and using the <= re-

WSS ational operator will help avoid off-by-one errors. For a loop used to print the values I to
10, for example, the loop-continuation condition should be counter <= 10 rather than
counter < 10 (which is an off-by-one error) or counter < 11 (which is nevertheless cor-
rect). Many programmers prefer so-called zero-based counting, in which, to count 10
times through the loop, counter would be initialized to zero and the loop-continuation
test would be counter < 10.

?- Good Programming Practice 5.1

General Format of a for Statement
The general form of the for statement is

for (initialization; loopContinuationCondition; increment)
statement

where the initialization expression initializes the loop’s control variable, loop Continuation-
Condition determines whether the loop should continue executing and increment incre-
ments the control variable. In most cases, the for statement can be represented by an
equivalent while statement, as follows:

initialization;

while (loopContinuationCondition)

{

statement
increment;

}

There’s an exception to this rule, which we’ll discuss in Section 5.7.

If the initialization expression declares the control variable (i.e., its type is specified
before its name), the control variable can be used on/y in the body of the for statement—
the control variable will be unknown ouzside the for statement. This restricted use of the
control variable name is known as the variable’s scope. The scope of a variable specifies
where it can be used in a program. Scope is discussed in detail in Chapter 6.

Comma-Separated Lists of Expressions

The initialization and increment expressions can be comma-separated lists of expressions.
The commas, as used in these expressions, are comma operators, which guarantee that lists
of expressions evaluate from left to right. The comma operator has the lowest precedence
of all C++ operators. The value and type of a comma-separated list of expressions is the value
and type of the rightmost expression. The comma operator is often used in for statements.
Its primary application is to enable you to use multiple initialization expressions and/or mul-

162 Chapter 5 Control Statements: Part 2; Logical Operators

tiple increment expressions. For example, there may be several control variables in a single
for statement that must be initialized and incremented.

w72 Good Programming Practice 5.2
Place only expressions involving the control variables in the initialization and increment

S sections of a for statement.

Expressions in the for Statement’s Header Are Optional

The three expressions in the for statement header are optional (but the two semicolon sep-
arators are required). If the loop ContinuationCondition is omitted, C++ assumes that the
condition is true, thus creating an infinite loop. One might omit the initialization expres-
sion if the control variable is initialized eatlier in the program. One might omit the incre-
ment expression if the increment is calculated by statements in the body of the for or if no
increment is needed.

Increment Expression Acts Like a Standalone Statement
The increment expression in the for statement acts like a standalone statement at the end
of for statement’s body. Therefore, for integer counters, the expressions

counter = counter +
counter +=
++counter

counter++

are all equivalent in the increment expression (when no other code appears there). The in-
teger variable being incremented here does not appear in a larger expression, so both pre-
incrementing and postincrementing actually have the same effect.

35 Common Programming Error 5.2
' Lz Placing a semicolon immediately to the right of the right parenthesis of a for header makes
- the body of that for statement an empty statement. This is usually a logic error.

for Statement: Notes and Observations

The initialization, loop-continuation condition and increment expressions of a for state-
ment can contain arithmetic expressions. For example, if x = 2 and y = 10, and x and y are
not modified in the loop body, the for header

for (unsigned int j = x; j <= X Fy; ja=y /X))
is equivalent to
for (unsigned int j = 2; j <= 80; j += 5)

The “increment” of a for statement can be negative, in which case it’s really a decre-
ment and the loop actually counts downward (as shown in Section 5.4).

If the loop-continuation condition is initially false, the body of the for statement is
not performed. Instead, execution proceeds with the statement following the for.

Frequently, the control variable is printed or used in calculations in the body of a for
statement, but this is not required. It’s common to use the control variable for controlling
repetition while never mentioning it in the body of the for statement.

5.4 Examples Using the for Statement 163

<= Error-Prevention Tip 5.2
ig | Although the value of the control variable can be changed in the body of a for statement,
' avoid doing so, because this can lead to subtle logic errors.

for Statement UML Activity Diagram

The for repetition statement’s UML activity diagram is similar to that of the whiTe state-
ment (Fig. 4.6). Figure 5.4 shows the activity diagram of the for statement in Fig. 5.2.
The diagram makes it clear that initialization occurs once before the loop-continuation test
is evaluated the first time, and that incrementing occurs each time through the loop affer
the body statement executes. Note that (besides an initial state, transition arrows, a merge,
a final state and several notes) the diagram contains only action states and a decision.

-———— unsigned int counter = 1

[counter <= 10]

\
[counter > 10] Y

I I
\ I I
\

@ N cout << counter << " "; ++counter

\

Determine whether
looping should
continue

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

5.4 Examples Using the for Statement

The following examples show methods of varying the control variable in a for statement.
In each case, we write the appropriate for statement header. Note the change in the rela-
tional operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.
for (unsigned int i = 1; i <= 100; ++i)

b) Vary the control variable from 100 down to 0 in decrements of 1. Notice that we
used type int for the control variable in this for header. The condition does not

164 Chapter 5 Control Statements: Part 2; Logical Operators

become false until control variable i contains -1, so the control variable must be
able to store both positive and negative numbers.

for (int i = ;1o>= 03 --1)
c) Vary the control variable from 7 to 77 in steps of 7.
for (unsigned int i = 7; i <= ;01 =7)
d) Vary the control variable from 20 down to 2 in steps of -2.
for (unsigned int i = ;1 >=2; 1 -=)
e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.
for (unsigned int i = 2; i <= ;1 += 3)
f) Vary the control variable over the following sequence of values: 99, 88, 77, 66, 55.

for (unsigned int i = ;1 o>= ;i -=)
=, Common Programming Error 5.3
' 'f Not using the proper relational operator in the loop-continuation condition of a loop that
TE counts downward (such as incorrectly using i <= 1 instead of i >= 1 in a loop counting
down to 1) is a logic error that yields incorrect results when the program runs.

' Do not use equality operators (1= or ==) in a loop-continuation condition if the loop’s con-
trol variable increments or decrements by more than 1. For example consider the for state-
ment header for (unsigned int counter = 1; counter != 10; counter += 2). The
loop-continuation test counter != 10 never becomes false (resulting in an infinite loop)
because counter increments by 2 after each iteration.

;‘;{‘I i Common Programming Error 5.4
- O

Application: Summing the Even Integers from 2 to 20
The program of Fig. 5.5 uses a for statement to sum the even integers from 2 to 20. Each
iteration of the loop (lines 11-12) adds control variable number’s value to variable total.

1 // Fig. 5.5: fig05_05.cpp

2 // Summing integers with the for statement.

3 #include <iostream>

4 using namespace std;

5

6 dint mainQ

7 {

8 unsigned int total = 0; // initialize total

9

10 // total even integers from 2 through 20

11 for (unsigned int number = 2; number <= ; number +=)
12 total += number;

13

14 cout << << total << endl; // display results

I5 } // end main

Fig. 5.5 | Summing integers with the for statement. (Part | of 2.)

5.4 Examples Using the for Statement 165

Sum is 110

Fig. 5.5 | Summing integers with the for statement. (Part 2 of 2.)

The body of the for statement in Fig. 5.5 actually could be merged into the incre-
ment portion of the for header by using the comma operator as follows:

for (unsigned int number = 2; // initialization
number <= ; // Toop continuation condition
total += number, number +=) // total and increment
; // empty body

| Although statements preceding a for and statements in the body of a for often can be
merged into the for header, doing so can make the program more difficult to read, main-

tain, modify and debug.

:y.. Good Programming Practice 5.3

Application: Compound Interest Calculations
Consider the following problem statement:

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming
that all interest is left on deposit in the account, calculate and print the amount of
money in the account at the end of each year for 10 years. Use the following formula
for determining these amounts:

a=p(1l+r)
where

p is the original amount invested (i.e., the principal),

1 is the annual interest rate,

n is the number of years and

a is the amount on deposit at the end of the n” year.

The for statement (Fig. 5.6, lines 21-28) performs the indicated calculation for each
of the 10 years the money remains on deposit, varying a control variable from 1 to 10 in
increments of 1. C++ does 7ot include an exponentiation operator, so we use the standard
library function pow (line 24). The function pow(x, y) calculates the value of x raised to
the y™ power. In this example, the algebraic expression (1 + 7)” is written as pow(1.0 +
rate, year), where variable rate represents 7 and variable year represents 7. Function
pow takes two arguments of type doubTe and returns a double value.

// Fig. 5.6: fig05_06.cpp

// Compound interest calculations with for.
#include <iostream>

#include <iomanip>

#include <cmath> // standard math library
using namespace std;

int mainQ)

{

VOO ~NGONUND UWN -

Fig. 5.6 | Compound interest calculations with for. (Part | of 2.)

166 Chapter 5 Control Statements: Part 2; Logical Operators

10 double amount; // amount on deposit at end of each year

11 double principal = ; // initial amount before interest
12 double rate = ; // annual 1interest rate

13

14 // display headers

15 cout << << setw() << << endl;
16

17 // set floating-point number format

18 cout << fixed << setprecision();

19

20 // calculate amount on deposit for each of ten years

21 for (unsigned int year = 1; year <= ; ++year)

22 {

23 // calculate new amount for specified year

24 amount = principal * pow(+ rate, year);

25

26 // display the year and the amount

27 cout << setw() << year << setw() << amount << endl;
28 } // end for

29 } // end main

Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477 .46
9 1551.33

10 1628.89

Fig. 5.6 | Compound interest calculations with for. (Part 2 of 2.)

This program will not compile without including header <cmath> (line 5). Function
pow requires two double arguments. Variable year is an integer. Header <cmath> includes
information that tells the compiler to convert the value of year to a temporary doubTe rep-
resentation before calling the function. This information is contained in pow’s function
prototype. Chapter 6 summarizes other math library functions.

=, Common Programming Error 5.5
' 'f Forgetting to include the appropriate header when using standard library functions (e.g.,

s <cmaths> in a program that uses math library functions) is a compilation error.

A Caution about Using Type float or double for Monetary Amounts

Lines 10—12 declare the double variables amount, principal and rate. We did this for
simplicity because we're dealing with fractional parts of dollars, and we need a type that
allows decimal points in its values. Unfortunately, this can cause trouble. Here’s a simple
explanation of what can go wrong when using float or double to represent dollar

5.4 Examples Using the for Statement 167

amounts (assuming setprecision(2) is used to specify two digits of precision when print-
ing): Two dollar amounts stored in the machine could be 14.234 (which prints as 14.23)
and 18.673 (which prints as 18.67). When these amounts are added, they produce the in-
ternal sum 32.907, which prints as 32.91. Thus your printout could appear as

14.23
+ 18.67

but a person adding the individual numbers as printed would expect the sum 32.90!
You’ve been warned! In the exercises, we explore the use of integers to perform monetary
calculations. [/Note: Some third-party vendors sell C++ class libraries that perform precise
monetary calculations.]

Using Stream Manipulators to Format Numeric Output

The output statement in line 18 before the for loop and the output statement in line 27
in the for loop combine to print the values of the variables year and amount with the for-
matting specified by the parameterized stream manipulators setprecision and setw and
the nonparameterized stream manipulator fixed. The stream manipulator setw(4) spec-
ifies that the next value output should appear in a field width of 4—i.e., cout prints the
value with at least 4 character positions. If the value to be output is /ess than 4 character
positions wide, the value is right justified in the field by default. If the value to be output
is more than 4 character positions wide, the field width is extended rightward to accom-
modate the entire value. To indicate that values should be output left justified, simply out-
put nonparameterized stream manipulator Teft (found in header <iostreams). Right
justification can be restored by outputting nonparameterized stream manipulator right.

The other formatting in the output statements indicates that variable amount is printed
as a fixed-point value with a decimal point (specified in line 18 with the stream manipulator
fixed) right justified in a field of 21 character positions (specified in line 27 with setw(21))
and two digits of precision to the right of the decimal point (specified in line 18 with manip-
ulator setprecision(2)). We applied the stream manipulators fixed and setprecision to
the output stream (i.e., cout) before the for loop because these format settings remain in
effect until they’re changed—such settings are called sticky settings and they do 7oz need to
be applied during each iteration of the loop. However, the field width specified with setw
applies only to the next value output. We discuss C++’s powerful input/output formatting
capabilities in Chapter 13, Stream Input/Output: A Deeper Look.

The calculation 1.0 + rate, which appears as an argument to the pow function, is con-
tained in the body of the for statement. In fact, this calculation produces the same result
during each iteration of the loop, so repeating it is wasteful—it should be performed once
before the loop.

Be sure to try our Peter Minuit problem in Exercise 5.29. This problem demonstrates
the wonders of compound interest.

5w Performance Tip 5.1
~-{a:’- Avoid placing expressions whose values do not change inside loops. Even if you do, many
= of today’s sophisticated optimizing compilers will automatically place such expressions out-
side the loops in the generated machine code.

168 Chapter 5 Control Statements: Part 2; Logical Operators

. Performance Tip 5.2
5 & Many compilers contain optimization features that improve the performance of the code
' you write, but it’s still better to write good code from the start.

5.5 do...wh1ile Repetition Statement

The do...while repetition statement is similar to the while statement. In the whiTe state-
ment, the loop-continuation condition test occurs at the beginning of the loop before the
body of the loop executes. The do...while statement tests the loop-continuation con-
dition after the loop body executes; therefore, the loop body always executes at least once.

Figure 5.7 uses a do...whiTe statement to print the numbers 1-10. Upon entering the
do...while statement, line 12 outputs counter’s value and line 13 increments counter.
Then the program evaluates the loop-continuation test at the bottom of the loop (line 14).
If the condition is true, the loop continues from the first body statement in the do...while
(line 12). If the condition is false, the loop terminates and the program continues with the
next statement after the loop (line 16).

1 // Fig. 5.7: fig05_07.cpp

2 // do...while repetition statement.

3 #include <iostream>

4 using namespace std;

5

6 1int mainQ)

7 {

8 unsigned int counter = 1; // initialize counter
9

10 do

11 {

12 cout << counter << ; // display counter
13 ++counter; // increment counter

14 } while (counter <=); // end do...while
15

16 cout << endl; // output a newline

17 } // end main

12345678910

Fig. 5.7 | do..while repetition statement.

do...while Statement UML Activity Diagram

Figure 5.8 contains the do...whiTe statement’s UML activity diagram, which makes it clear
that the loop-continuation condition is not evaluated until affer the loop performs its body
at least once. Compare this activity diagram with that of the while statement (Fig. 4.6).

Braces in a do...while Statement

If’s not necessary to use braces in the do...whiTe statement if there’s only one statement
in the body; however, most programmers include the braces to avoid confusion between
the while and do...while statements. For example,

while (condition)

5.6 switch Multiple-Selection Statement 169

cout << counter << " "; ----- -
— -

[counter <= 10]

Determine whether _ _ _ _ _ _ _ _ __
looping should
continue [counter > 10]

®

Fig. 5.8 | UML activity diagram for the do...whi e repetition statement of Fig. 5.7.

normally is regarded as the header of a while statement. A do...while with no braces
around the single statement body appears as

do
statement
while (condition);

which can be confusing. You might misinterpret the last line—while(condition) ;—as a
while statement containing as its body an empty statement. Thus, the do...while with
one statement often is written as follows to avoid confusion:

do
{

statement
} while (condition);

5.6 switch Multiple-Selection Statement

C++ provides the switch multiple-selection statement to perform many different actions
based on the possible values of a variable or expression. Each action is associated with the
value of an integral constant expression (i.e., any combination of character and integer
constants that evaluates to a constant integer value).

GradeBook Class with switch Statement to Count A, B, C, D and F Grades
This next version of the GradeBook class asks the user to enter a set of letter grades, then
displays a summary of the number of students who received each grade. The class uses a

170 Chapter 5 Control Statements: Part 2; Logical Operators

switch to determine whether each grade entered is an A, B, C, D or F and to increment
the appropriate grade counter. Class GradeBook is defined in Fig. 5.9, and its member-
function definitions appear in Fig. 5.10. Figure 5.11 shows sample inputs and outputs of
the main program that uses class GradeBook to process a set of grades.

Like earlier versions of the class definition, the GradeBook class definition (Fig. 5.9)
contains function prototypes for member functions setCourseName (line 11), getCourse-
Name (line 12) and displayMessage (line 13), as well as the class’s constructor (line 10).
The class definition also declares private data member courseName (line 17).

GradeBook Class Header

Class GradeBook (Fig. 5.9) now contains five additional private data members (lines 18—
22)——counter variables for each grade category (i.e., A, B, C, D and F). The class also con-
tains two additional pub1ic member functions—inputGrades and displayGradeReport.
Member function inputGrades (declared in line 14) reads an arbitrary number of letter
grades from the user using sentinel-controlled repetition and updates the appropriate
grade counter for each grade entered. Member function displayGradeReport (declared in
line 15) outputs a report containing the number of students who received each letter grade.

1 // Fig. 5.9: GradeBook.h

2 // GradeBook class definition that counts Tetter grades.

3 // Member functions are defined in GradeBook.cpp

4 #include <string> // program uses C++ standard string class

5

6 // GradeBook class definition

7 class GradeBook

8 {

9 public:

10 explicit GradeBook(std::string); // initialize course name
11 void setCourseName(std::string); // set the course name

12 std::string getCourseName() const; // retrieve the course name
13 void displayMessage() const; // display a welcome message

14 void inputGrades(); // input arbitrary number of grades from user
15 void displayGradeReport() const; // display report based on user input
16 private:

17 std::string courseName; // course name for this GradeBook

18 unsigned int aCount; // count of A grades

19 unsigned int bCount; // count of B grades
20 unsigned int cCount; // count of C grades
21 unsigned int dCount; // count of D grades
22 unsigned int fCount; // count of F grades

23 }; // end class GradeBook

Fig. 5.9 | GradeBook class definition that counts letter grades.

GradeBook Class Source-Code File

Source-code file GradeBook . cpp (Fig. 5.10) contains the member-function definitions for
class GradeBook. Lines 11-15 in the constructor initialize the five grade counters to 0—
when a GradeBook object is first created, no grades have been entered yet. These counters
will be incremented in member function inputGrades as the user enters grades. The def-

5.6 switch Multiple-Selection Statement 171

initions of member functions setCourseName, getCourseName and displayMessage are
identical to those in the earlier versions of class GradeBook.

1 // Fig. 5.10: GradeBook.cpp

2 // Member-function definitions for class GradeBook that

3 // uses a switch statement to count A, B, C, D and F grades.

4 #include <iostream>

5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;

7

8 // constructor initializes courseName with string supplied as argument;
9 // initializes counter data members to 0

10 GradeBook :GradeBook(string name)

11 : aCount(0), // initialize count of A grades to 0

12 bCount(0), // initialize count of B grades to 0

13 cCount(0), // initialize count of C grades to 0

14 dCount(0), // initialize count of D grades to 0

15 fCount(0) // initialize count of F grades to 0

16 {

17 setCourseName(name);

18 1} // end GradeBook constructor

19

20 // function to set the course name; Timits name to 25 or fewer characters
21 void GradeBook: :setCourseName(string name)

22 {

23 if (name.size() <= 25) // if name has 25 or fewer characters

24 courseName = name; // store the course name in the object

25 else // if name is longer than 25 characters

26 { // set courseName to first 25 characters of parameter name

27 courseName = name.substr(0, 25); // select first 25 characters
28 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
29 << "Limiting courseName to first 25 characters.\n" << endl;
30 } // end if...else

31 1} // end function setCourseName

32

33 // function to retrieve the course name
34 string GradeBook::getCourseName() const

35 {

36 return courseName;

37 1} // end function getCourseName
38

39 // display a welcome message to the GradeBook user
40 void GradeBook::displayMessage() const

41 {

42 // this statement calls getCourseName to get the

43 // name of the course this GradeBook represents

44 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
45 << endl;

46 1} // end function displayMessage

47

48 // input arbitrary number of grades from user; update grade counter
49 void GradeBook: :inputGrades()
50 {

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part | of 3.)

172 Chapter 5 Control Statements: Part 2; Logical Operators

51 int grade; // grade entered by user

52

53 cout << "Enter the letter grades.” << end]l

54 << "Enter the EOF character to end input." << endl;
55

56 // loop until user types end-of-file key sequence
57 while ((grade = cin.get()) != EOF)

58 {

59 // determine which grade was entered

60 switch (grade) // switch statement nested in while
61 {

62 case 'A': // grade was uppercase A

63 case 'a': // or lowercase a

64 ++aCount; // increment aCount

65 break; // necessary to exit switch

66

67 case 'B': // grade was uppercase B

68 case 'b': // or lowercase b

69 ++bCount; // increment bCount

70 break; // exit switch

71

72 case 'C': // grade was uppercase C

73 case 'c': // or Towercase c

74 ++cCount; // increment cCount

75 break; // exit switch

76

77 case 'D': // grade was uppercase D

78 case 'd': // or Towercase d

79 ++dCount; // increment dCount

80 break; // exit switch

81

82 case 'F': // grade was uppercase F

83 case 'f': // or lowercase f

84 ++fCount; // increment fCount

85 break; // exit switch

86

87 case '\n': // dignore newlines,

88 case '\t': // tabs,

89 case ' ': // and spaces 1in input

920 break; // exit switch

91

92 default: // catch all other characters

93 cout << "Incorrect letter grade entered."
94 << " Enter a new grade." << endl;

95 break; // optional; will exit switch anyway
26 } // end switch

97 } // end while

98 1} // end function inputGrades

99

100 // display a report based on the grades entered by user
101 void GradeBook::displayGradeReport() const
102 {

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 2 of 3.)

5.6 switch Multiple-Selection Statement 173

103 // output summary of results

104 cout <<

105 << << aCount // display number of A grades
106 << << bCount // display number of B grades
107 << << cCount // display number of C grades
108 << << dCount // display number of D grades
109 << << fCount // display number of F grades
110 << endl;

111 '} // end function displayGradeReport

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 3 of 3.)

Reading Character Input

The user enters letter grades for a course in member function inputGrades (lines 49-98).
In the while header, in line 57, the parenthesized assignment (grade = cin.get()) exe-
cutes first. The cin.get() function reads one character from the keyboard and stores that
character in integer variable grade (declared in line 51). Normally, characters are stored in
variables of type char; however, characters can be stored in any integer data type, because
types short, int, Tong and Tong Tong are guaranteed to be at least as big as type char.
Thus, we can treat a character either as an integer or as a character, depending on its use.
For example, the statement

cout << << <<
<< static_cast< int > () << endl;

prints the character a and its integer value as follows:
The character (a) has the value 97

The integer 97 is the character’s numerical representation in the computer. Appendix B
shows the characters and decimal equivalents from the ASCII (American Standard Code
for Information Interchange) character set.

Generally, assignment statements have the value that’s assigned to the variable on the
left side of the =. Thus, the value of the assignment expression grade = cin.get() is the
same as the value returned by cin.get() and assigned to the variable grade.

The fact that assignment expressions have values can be useful for assigning the same
value to several variables. For example,

a=b=c=0;

first evaluates ¢ = 0 (because the = operator associates from right to left). The variable b is
then assigned the value of ¢ = 0 (which is 0). Then, a is assigned the value of b = (c = 0)
(which is also 0). In the program, the value of grade = cin.get() is compared with the value
of EOF (a symbol whose acronym stands for “end-of-file”). We use EOF (which normally has
the value —1) as the sentinel value. However, you do not type the value —1, nor do you type the
letters EOF as the sentinel value. Rather, you type a system-dependent keystroke combination that
means “end-of-file” to indicate that you have no more data to enter. EOF is a symbolic integer
constant that is included into the program via the <iostream> header.! If the value assigned

1. To compile this program, some compilers require the header <cstdio> which defines EOF.

174 Chapter 5 Control Statements: Part 2; Logical Operators

to grade is equal to EOF, the whiTe loop (lines 57-97) terminates. We've chosen to represent
the characters entered into this program as ints, because EOF has type int.

Entering the EOF Indicator
On OS X/Linux/UNIX systems and many others, end-of-file is entered by typing

<Ctrl> d

on a line by itself. This notation means to press and hold down the C#r/ key, then press the
dkey. On other systems such as Microsoft Windows, end-of-file can be entered by typing

<Ctrl> z

[Note: In some cases, you must press Enter after the preceding key sequence. Also, the char-
acters AZ sometimes appear on the screen to represent end-of-file, as shown in Fig. 5.11.]

- Portability Tip 5.1
“ The keystroke combinations for entering end-of-file are system dependent.
Al -

- Portability Tip 5.2
& Testing for the symbolic constant EOF rather than -1 makes programs more portable. The
Sl C standard, from which C++ adopts the definition of EOF, states that EOF is a negative
integral value, so EOF could have different values on different systems.

In this program, the user enters grades at the keyboard. When the user presses the
Enter (or the Return) key, the characters are read by the cin.get) function, one character
at a time. If the character entered is not end-of-file, the flow of control enters the switch
statement (Fig. 5.10, lines 60-96), which increments the appropriate letter-grade counter.

switch Statement Details

The switch statement consists of a series of case labels and an optional default case.
These are used in this example to determine which counter to increment, based on a grade.
When the flow of control reaches the switch, the program evaluates the expression in the
parentheses (i.e., grade) following keyword switch (line 60). This is called the controlling
expression. The switch statement compares the value of the controlling expression with
cach case label. Assume the user enters the letter C as a grade. The program compares C to
cach case in the switch. If a match occurs (case 'C': in line 72), the program executes
the statements for that case. For the letter C, line 74 increments cCount by 1. The break
statement (line 75) causes program control to proceed with the first statement after the
switch—in this program, control transfers to line 97. This line marks the end of the body
of the while loop that inputs grades (lines 57-97), so control flows to the while’s condi-
tion (line 57) to determine whether the loop should continue executing.

The cases in our swi tch explicitly test for the lowercase and uppercase versions of the
letters A, B, C, D and F. Note the cases in lines 62—63 that test for the values 'A" and 'a’
(both of which represent the grade A). Listing cases consecutively with no statements
between them enables the cases to perform the same set of statements—when the control-
ling expression evaluates to either 'A" or "a’, the statements in lines 64-65 will execute.
Each case can have multiple statements. The switch selection statement does not require
braces around multiple statements in each case.

5.6 switch Multiple-Selection Statement 175

Without break statements, each time a match occurs in the switch, the statements
for that case and subsequent cases execute until a break statement or the end of the
switch is encountered. This feature is perfect for writing a concise program that displays
the iterative song “The Twelve Days of Christmas” in Exercise 5.28.

s Common Programming Error 5.6

e
'z Forgetting a break statement when one is needed in a switch statement is a logic error.
-

375 Common Programming Error 5.7

"Lz Omitting the space between the word case and the integral value tested in a switch state-

_ ment—e.g., writing case3: instead of case 3:—is a logic error. The switch statement
will not perform the appropriate actions when the controlling expression has a value of 3.

Providing a default Case

If 70 match occurs between the controlling expression’s value and a case label, the de-
fault case (lines 92-95) executes. We use the default case in this example to process all
controlling-expression values that are neither valid grades nor newline, tab or space char-
acters. If no match occurs, the default case executes, and lines 93-94 print an error mes-
sage indicating that an incorrect letter grade was entered. If no match occurs in a switch
statement that does not contain a default case, program control continues with the first
statement after the switch.

<= Error-Prevention Tip 5.3
g' | Provide a default case in switch statements. Cases not explicitly tested in a switch state-
~ ment without a default case are ignored. Including a default case focuses you on the
need to process exceptional conditions. There are situations in which no default process-
ing is needed. Although the case clauses and the default case clause in a switch state-
ment can occur in any order, it’s common practice to place the default clause last.

%73 Good Programming Practice 5.4

? The last case in a switch statement does not require a break statement. Nevertheless,
include this break for clarity and for symmetry with other cases.
Ignoring Newline, Tab and Blank Characters in Input
Lines 87-90 in the switch statement of Fig. 5.10 cause the program to skip newline, tab
and blank characters. Reading characters one at a time can cause problems. To have the
program read the characters, we must send them to the computer by pressing the Enter
key. This places a newline character in the input after the character we wish to process.
Often, this newline character must be specially processed. By including these cases in our
switch statement, we prevent the error message in the default case from being printed
each time a newline, tab or space is encountered in the input.

Testing Class GradeBook

Figure 5.11 creates a GradeBook object (line 8). Line 10 invokes its displayMessage mem-
ber function to output a welcome message to the user. Line 11 invokes member function
inputGrades to read a set of grades from the user and keep track of how many students
received each grade. The output window in Fig. 5.11 shows an error message displayed in

176 Chapter 5 Control Statements: Part 2; Logical Operators

response to entering an invalid grade (i.e., E). Line 12 invokes GradeBook member func-
tion displayGradeReport (defined in lines 101-111 of Fig. 5.10), which outputs a report
based on the grades entered (as in the output in Fig. 5.11).

1 // Fig. 5.11: fig05_11.cpp

2 // Creating a GradeBook object and calling its member functions.
3 #include // include definition of class GradeBook
4

5 dnt mainQ

6 {

7 // create GradeBook object

8 GradeBook myGradeBook()

9

10 myGradeBook.displayMessage(); // display welcome message

11 myGradeBook. inputGrades(); // read grades from user

12 myGradeBook.displayGradeReport(); // display report based on grades

13 } // end main

Welcome to the grade book for
CS101 C++ Programming!

Enter the Tletter grades.
Enter the EOF character to end input.

a

B

c

C

A

d

f

C

E

Incorrect Tetter grade entered. Enter a new grade.
D

A

b

V4

Number of students who received each Tetter grade:
A: 3

B: 2

Cs 3

D: 2

F: 1

Fig. 5.11 | Creating a GradeBook object and calling its member functions.

switch Statement UML Activity Diagram

Figure 5.12 shows the UML activity diagram for the general switch multiple-selection
statement. Most swi tch statements use a break in each case to terminate the swi tch state-
ment after processing the case. Figure 5.12 emphasizes this by including break statements
in the activity diagram. Without the break statement, control would not transfer to the

5.6 switch Multiple-Selection Statement 177

first statement after the switch statement after a case is processed. Instead, control would
transfer to the next case’s actions.

o
N [true]
casea L ___ — =~
[false]
- H>——=
[false]

[false]

Fig. 5.12 | switch multiple-selection statement UML activity diagram with break statements.

The diagram makes it clear that the break statement at the end of a case causes con-
trol to exit the switch statement immediately. Again, note that (besides an initial state,
transition arrows, a final state and several notes) the diagram contains action states and
decisions. Also, the diagram uses merge symbols to merge the transitions from the break
statements to the final state.

When using the switch statement, remember that each case can be used to test only
an integral constant expression—any combination of character constants and integer con-
stants that evaluates to a constant integer value. A character constant is represented as the
specific character in single quotes, such as 'A’. An integer constant is simply an integer
value. Also, each case label can specify only one integral constant expression.

Specifying a nonconstant integral expression in a switch’s case label is a syntax error.

% Common Programming Error 5.8
e £

Providing case labels with identical values in a switch statement is a compilation error.

Eﬁ Common Programming Error 5.9
s £

3

178 Chapter 5 Control Statements: Part 2; Logical Operators

In Chapter 12, we present a more elegant way to implement switch logic. We'll use
a technique called polymorphism to create programs that are often clearer, more concise,
easier to maintain and easier to extend than programs that use switch logic.

Notes on Data Types

Ce++ has flexible data type sizes (see Appendix C, Fundamental Types). Different applica-
tions, for example, might need integers of different sizes. C++ provides several integer
types. The range of integer values for each type is platform dependent. In addition to the
types int and char, C++ provides the types short (an abbreviation of short int), Tong
(an abbreviation of Tong int) and Tong Tong (an abbreviation of Tong Tong int). The min-
imum range of values for short integers is —32,767 to 32,767. For the vast majority of
integer calculations, Tong integers are sufficient. The minimum range of values for Tong
integers is —2,147,483,647 to 2,147,483,647. On most computers, ints are equivalent ei-
ther to short or to Tong. The range of values for an int is at least the same as that for short
integers and no larger than that for Tong integers. The data type char can be used to rep-
resent any of the characters in the computer’s character set. It also can be used to represent
small integers.

C++11 In-Class Initializers

C++11 allows you to provide a default value for a data member when you declare it in the
class declaration. For example, lines 19-23 of Fig. 5.9 could have initialized data members
aCount, bCount, cCount, dCount and fCount to 0 as follows:

unsigned int aCount = 0; // count of A grades
unsigned int bCount = 0; // count of B grades
unsigned int cCount = 0; // count of C grades
unsigned int dCount = 0; // count of D grades
unsigned int fCount = 0; // count of F grades

rather than initializing them in the class’s constructor (Fig. 5.10, lines 10-18). In later
chapters, we'll continue discussing in-class initializers and show how they enable you to
perform certain data member initializations that were not possible in earlier C++ versions.

5.7 break and continue Statements

C++ also provides statements break and continue to alter the flow of control. The pre-
ceding section showed how break can be used to terminate a switch statement’s execu-
tion. This section discusses how to use break in a repetition statement.

break Statement

The break statement, when executed in a while, for, do...while or switch statement,
causes immediate exit from that statement. Program execution continues with the next
statement. Common uses of the break statement are to escape early from a loop or to skip
the remainder of a switch statement. Figure 5.13 demonstrates the break statement (line
13) exiting a for repetition statement.

When the i f statement detects that count is 5, the break statement executes. This ter-
minates the for statement, and the program proceeds to line 18 (immediately after the for
statement), which displays a message indicating the control variable value that terminated
the loop. The for statement fully executes its body only four times instead of 10. The

5.7 break and continue Statements 179

1 // Fig. 5.13: fig05_13.cpp

2 // break statement exiting a for statement.

3 #include <iostream>

4 using namespace std;

5

6 1int main()

7 {

8 unsigned int count; // control variable also used after Tloop terminates
9

10 for (count = 1; count <= 10; ++count) // loop 10 times

11 {

12 if (count == 5)

13 break; // break Toop only if count is 5

14

15 cout << count << " ";

16 } // end for

17

18 cout << "\nBroke out of loop at count = " << count << endl;

19 } // end main

1234
Broke out of loop at count = 5

Fig. 5.13 | break statement exiting a for statement.

control variable count is defined outside the for statement header, so that we can use the
control variable both in the loop’s body and affer the loop completes its execution.

continue Statement

The continue statement, when executed in a while, for or do...while statement, skips
the remaining statements in the body of that statement and proceeds with the next itera-
tion of the loop. In while and do...while statements, the loop-continuation test evaluates
immediately after the continue statement executes. In the for statement, the increment
expression executes, then the loop-continuation test evaluates.

Figure 5.14 uses the continue statement (line 11) in a for statement to skip the
output statement (line 13) when the nested i (lines 10-11) determines that the value of
count is 5. When the continue statement executes, program control continues with the
increment of the control variable in the for header (line 8) and loops five more times.

// Fig. 5.14: fig05_14.cpp

// continue statement terminating an iteration of a for statement.
#include <iostream>

using namespace std;

int main()

{

for (unsigned int count = 1; count <= 10; ++count) // loop 10 times

{

VO ~NONUND WN -

Fig. 5.14 | continue statement terminating an iteration of a for statement. (Part | of 2.)

180 Chapter 5 Control Statements: Part 2; Logical Operators

10 if (count ==) // if count is 5,

11 continue; // skip remaining code in loop
12

13 cout << count << ;

14 } // end for

15

16 cout << << endl;

17 } // end main

1234678910
Used continue to skip printing 5

Fig. 5.14 | continue statement terminating an iteration of a for statement. (Part 2 of 2.)

In Section 5.3, we stated that the while statement could be used in most cases to
represent the for statement. The one exception occurs when the increment expression in
the while statement follows the continue statement. In this case, the increment does not
execute before the program tests the loop-continuation condition, and the while does not
execute in the same manner as the for.

Some programmers feel that break and continue violate structured programming. The
effects of these statements can be achieved by structured programming techniques we soon
will learn, so these programmers do not use break and continue. Most programmers con-
sider the use of break in switch statements acceptable.

--3-!".. Good Programming Practice 5.5

449 Software Engineering Observation 5.1
_ There’s a tension between achieving quality software engineering and achieving the best-
S8 performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following guidelines: First,
make your code simple and correct; then make it fast and small, but only if necessary.

5.8 Logical Operators

So far we've studied only simple conditions, such as counter <= 10, total > 1000 and num-
ber != sentinelValue. We expressed these conditions in terms of the relational operators
>, <, >= and <=, and the equality operators == and !=. Each decision tested precisely one
condition. To test multiple conditions while making a decision, we performed these tests
in separate statements or in nested if or 1f...eTse statements.

C++ provides logical operators that are used to form more complex conditions by
combining simple conditions. The logical operators are && (logical AND), || (logical OR)
and ! (logical NOT, also called logical negation).

Logical AND (&&) Operator
Suppose that we wish to ensure that two conditions are ot/ true before we choose a cer-
tain path of execution. In this case, we can use the && (logical AND) operator, as follows:

5.8 Logical Operators 181

if (gender == && age >=)
++seniorFemales;
This if statement contains two simple conditions. The condition gender == FEMALE is
used here to determine whether a person is a female. The condition age >= 65 determines
whether a person is a senior citizen. The simple condition to the left of the & operator
evaluates first. If necessary, the simple condition to the right of the && operator evaluates
next. As we'll discuss shortly, the right side of a logical AND expression is evaluated only
if the left side is true. The i f statement then considers the combined condition

gender == && age >=

This condition is true if and only if bozh of the simple conditions are true. Finally, if this
combined condition is indeed true, the statement in the if statement’s body increments
the count of seniorFemales. If either (or both) of the simple conditions are false, then
the program skips the incrementing and proceeds to the statement following the i f. The pre-
ceding combined condition can be made more readable by adding redundant parentheses:

(gender ==) & (age >=)

 Although 3 < x < 7 is a mathematically correct condition, it does not evaluate as you might
expect in C++. Use (3 <x && x < 7) to get the proper evaluation in C++.

- —,—I i Common Programming Error 5.10

L

Figure 5.15 summarizes the & operator. The table shows all four possible combina-
tions of false and true values for expressionl and expression2. Such tables are often called
truth tables. C++ evaluates to false or true all expressions that include relational opera-
tors, equality operators and/or logical operators.

expression | expression2 expression | & expression2
false false false

false true false

true false false

true true true

Fig. 5.15 | && (logical AND) operator truth table.

Logical OR (||) Operator

Now let’s consider the | | (logical OR) operator. Suppose we wish to ensure that either or
both of two conditions are true before we choose a certain path of execution. In this case,
we use the || operator, as in the following program segment:

if ((semesterAverage >=) || (finalExam >=))
cout << << endl;

This preceding condition contains two simple conditions. The simple condition
semesterAverage >= 90 evaluates to determine whether the student deserves an “A” in the
course because of a solid performance throughout the semester. The simple condition

182 Chapter 5 Control Statements: Part 2; Logical Operators

finalExam >= 90 evaluates to determine whether the student deserves an “A” in the course
because of an outstanding performance on the final exam. The i f statement then considers
the combined condition

(semesterAverage >= 90) || (finalExam >= 90)

and awards the student an “A” if either or both of the simple conditions are true. The mes-
sage “Student grade is A” prints unless both of the simple conditions are false.
Figure 5.16 is a truth table for the logical OR operator (| |).

expression | expression2 expression| | | expression2
false false false
false true true
true false true
true true true
Fig. 5.16 | || (logical OR) operator truth table.

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing & or | | operators evaluates only until
the truth or falsehood of the expression is known. Thus, evaluation of the expression

(gender == FEMALE) && (age >= 65)

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and
continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the
condition age >= 65 is true). This performance feature for the evaluation of logical AND
and logical OR expressions is called short-circuit evaluation.

w3se . Performance Tip 5.3

< W [n expressions using operator &, if the separate conditions are independent of one another,

: * make the condition most likely to be false the lefimost condition. In expressions using op-
erator | |, make the condition most likely to be true the lefimost condition. This use of
short-circuit evaluation can reduce a program’s execution time.

Y
e

Logical Negation (!) Operator

C++ provides the ! (logical NOT, also called logical negation) operator to “reverse” a con-
dition’s meaning. The unary logical negation operator has only a single condition as an
operand. The unary logical negation operator is placed before a condition when we are in-
terested in choosing a path of execution if the original condition (without the logical ne-
gation operator) is false, such as in the following program segment:

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator.

5.8 Logical Operators 183

You can often avoid the ! operator by using an appropriate relational or equality oper-

ator. For example, the preceding i f statement also can be written as follows:

if (grade !'= sentinelValue)
cout << "The next grade is

<< grade << endl;

This flexibility often can help you express a condition in a more “natural” or convenient
manner. Figure 5.17 is a truth table for the logical negation operator ().

expression lexpression

false true

true false

Fig. 5.17 | ! (logical negation)
operator truth table.

Logical Operators Example

Figure 5.18 demonstrates the logical operators by producing their truth tables. The output
shows each expression that’s evaluated and its boo1 result. By default, boo1 values true and
false are displayed by cout and the stream insertion operator as 1 and 0, respectively. We
use stream manipulator boolalpha (a szicky manipulator) in line 9 to specify that the value
of each booT expression should be displayed as either the word “true” or the word “false.”
For example, the result of the expression false & false in line 10 is false, so the second
line of output includes the word “false.” Lines 9-13 produce the truth table for &&. Lines
16-20 produce the truth table for | |. Lines 23-25 produce the truth table for !.

VoOoO~NONUND WN -

10
11
12
13
14
15
16
17
18
19
20

// Fig. 5.18: fig05_18.cpp
// Logical operators.
#include <iostream>

using namespace std;

int main(Q)
{
// create truth table for &% (logical AND) operator
cout << boolalpha << "Logical AND (&&)"
<< "\nfalse && false: " << (false && false)
<< "\nfalse && true: " << (false && true)
<< "\ntrue && false: " << (true && false)

<< "\ntrue && true: " << (true && true) << "\n\n";
// create truth table for || (logical OR) operator
cout << "Logical OR (||)"

<< "\nfalse || false: " << (false || false)

<< "\nfalse || true: " << (false || true)

<< "\ntrue || false: " << (true || false)

<< "\ntrue || true: " << (true || true) << "\n\n";

Fig. 5.18 | Logical operators. (Part | of 2.)

184 Chapter 5 Control Statements: Part 2; Logical Operators
21
22 // create truth table for ! (logical negation) operator
23 cout << "lLogical NOT ()"
24 << "\n!false: " << (!false)
25 << "\n'true: " << (!true) << endl;

26 } // end main

Logical AND (&&)

false && false: false
false && true: false
true && false: false
true && true: true

Logical OR (| |)

false || false: false
false || true: true
true || false: true
true || true: true

Logical NOT (!)
Ifalse: true
Itrue: false

Fig. 5.18 | Logical operators. (Part 2 of 2.)

Summary of Operator Precedence and Associativity

Figure 5.19 adds the logical and comma operators to the operator precedence and associativ-

ity chart. The operators are shown from top to bottom, in decreasing order of precedence.

Operators Associativity
0O left to right

[See caution in Fig. 2.10 regard-
ing grouping parentheses.|

++ -- static_cast< fpe >0 left to right

++ -+ - ! right to left

* / % left to right

+ - left to right

<< > left to right

< <= > >= left to right

= I= left to right

&& left to right

I left to right

78 right to left

- 4= -= F= = %= right to left

, left to right

Fig. 5.19 | Operator precedence and associativity.

Type

primary

postfix

unary (prefix)
multiplicative
additive
insertion/extraction
relational
equality
logical AND
logical OR
conditional
assignment

comma

5.9 Confusing the Equality (==) and Assignment (=) Operators 185

5.9 Confusing the Equality (==) and Assignment (=)
Operators

There’s one error that C++ programmers, no matter how experienced, tend to make so
frequently that we feel it requires a separate section. That error is accidentally swapping
the operators == (equality) and = (assignment). What makes this so damaging is that it
ordinarily does 7ot cause syntax errors—statements with these errors tend to compile cor-
rectly and the programs run to completion, often generating incorrect results through run-
time logic errors. Some compilers issue a warning when = is used in a context where == is
expected.

Two aspects of C++ contribute to these problems. One is that any expression that pro-
duces a value can be used in the decision portion of any control statement. If the value of the
expression is zero, it’s treated as the value false, and if the value is nonzero, it’s treated as
the value true. The second is that assignments produce a value—namely, the value
assigned to the variable on the left side of the assignment operator. For example, suppose
we intend to write

if (payCode == 4) // good
cout << << endl;

but we accidentally write

if (payCode = 4) // bad
cout << << endl;

The first i f statement properly awards a bonus to the person whose payCode is equal to 4.
The second one—which contains the error—evaluates the assignment expression in the if
condition to the constant 4. Any nonzero value is interpreted as true, so this condition al-
ways evaluates as true and the person a/ways receives a bonus regardless of what the actual
paycode is! Even worse, the paycode has been modified when it was only supposed to be
examined)!

L -zl <= Common Programming Error 5.11

Using operator == for assignment and using operator = for equality are logic errors.

<= Error-Prevention Tip 5.4
* | Programmers normally write conditions such as x == 7 with the variable name on the lefs
and the constant on the right. By placing the constant on the left, as in 7 == x, you'll be
protected by the compiler if you accidentally replace the == operator with =. The compiler
treats this as a compilation error, because you can’t change the value of a constant. This

will prevent the potential devastation of a runtime logic error.

[~

Ivalues and rvalues

Variable names are said to be lvalues (for “left values”) because they can be used on the /lef?
side of an assignment operator. Constants are said to be rvalues (for “right values”) because
they can be used on only the right side of an assignment operator. Lvalues can also be used
as rvalues, but not vice versa.

186 Chapter 5 Control Statements: Part 2; Logical Operators

There’s another equally unpleasant situation. Suppose you want to assign a value to a
variable with a simple statement like

Here, too, this is 7oz a syntax error. Rather, the compiler simply evaluates the conditional
expression. If x is equal to 1, the condition is true and the expression evaluates to the value
true. If x is not equal to 1, the condition is false and the expression evaluates to the value
false. Regardless of the expression’s value, there’s no assignment operator, so the value
simply is lost. The value of x remains unaltered, probably causing an execution-time logic
error. Unfortunately, we do not have a handy trick to help you with this problem!

2= Error-Prevention Tip 5.5

" | Use your text editor to search for all occurrences of = in your program and check that you
have the correct assignment operator or logical operator in each place.

5.10 Structured Programming Summary

Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is sparser. We've learned that structured programming produces pro-
grams that are easier than unstructured programs to understand, test, debug, modify, and
even prove correct in a mathematical sense.

Figure 5.20 uses activity diagrams to summarize C++’s control statements. The initial
and final states indicate the single entry point and the single exit point of each control
statement. Arbitrarily connecting individual symbols in an activity diagram can lead to
unstructured programs. Therefore, the programming profession uses only a limited set of
control statements that can be combined in only two simple ways to build structured pro-
grams.

For simplicity, only single-entry/single-exit control statements are used—there’s only
one way to enter and only one way to exit each control statement. Connecting control
statements in sequence to form structured programs is simple—the final state of one con-
trol statement is connected to the initial state of the next—that is, they’re placed one after
another in a program. We’ve called this control-statement stacking. The rules for forming
structured programs also allow for control statements to be nested.

Figure 5.21 shows the rules for forming structured programs. The rules assume that
action states may be used to indicate any action. The rules also assume that we begin with
the so-called simplest activity diagram (Fig. 5.22), consisting of only an initial state, an
action state, a final state and transition arrows.

Applying the rules of Fig. 5.21 always results in an activity diagram with a neat,
building-block appearance. For example, repeatedly applying Rule 2 to the simplest
activity diagram results in an activity diagram containing many action states in sequence
(Fig. 5.23). Rule 2 generates a stack of control statements, so let’s call Rule 2 the stacking
rule. The vertical dashed lines in Fig. 5.23 are not part of the UML—we use them to sep-
arate the four activity diagrams that demonstrate Rule 2 of Fig. 5.21 being applied.

5.10 Structured Programming Summary 187

Sequence

Selection
if statement switch statement with breaks
(single selection) (multiple selection)
[t] [t]
[[

if...else statement
(double selection)

[f [t]
®
Repetition
while statement do...whi e statement for statement
@-
[t]
[t]
[f M

[

(f

®

Fig. 5.20 | C++'s single-entry/single-exit sequence, selection and repetition statements.

188 Chapter 5 Control Statements: Part 2; Logical Operators

Rules for forming structured programs

1) Begin with the “simplest activity diagram” (Fig. 5.22).

2) Any action state can be replaced by two action states in sequence.

3) Any action state can be replaced by any control statement (sequence,
if, if...else, switch, while, do...while or for').

4) Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 5.21 | Rules for forming structured programs.

Fig. 5.22 | Simplest activity diagram.

A
apply
Rule 2

7
’
’

® apply

Rule 2

7
’
’

Y apply

Rule 2

N
N
N

[
@®

Fig. 5.23 | Repeatedly applying Rule 2 of Fig. 5.21 to the simplest activity diagram.

Rule 3 is the nesting rule. Repeatedly applying Rule 3 to the simplest activity diagram
results in one with neatly nested control statements. For example, in Fig. 5.24, the action
state in the simplest activity diagram is replaced with a double-selection (if...eTse) state-
ment. Then Rule 3 is applied again to the action states in the double-selection statement,

5.10 Structured Programming Summary 189

replacing each with a double-selection statement. The dashed action-state symbols around
each of the double-selection statements represent an action state that was replaced in the
preceding activity diagram. [/Noze: The dashed arrows and dashed action state symbols
shown in Fig. 5.24 are not part of the UML. They’re used here as pedagogic devices to
illustrate that any action state may be replaced with a control statement.]

Fig. 5.24 | Applying Rule 3 of Fig. 5.21 to the simplest activity diagram several times.

Rule 4 generates larger, more involved and more deeply nested statements. The dia-
grams that emerge from applying the rules in Fig. 5.21 constitute the set of all possible
activity diagrams and hence the set of all possible structured programs. The beauty of the
structured approach is that we use only seven simple single-entry/single-exit control state-
ments and assemble them in only zwo simple ways.

190 Chapter 5 Control Statements: Part 2; Logical Operators

If the rules in Fig. 5.21 are followed, an activity diagram with illegal syntax (such as
that in Fig. 5.25) cannot be created. If you’re uncertain about whether a particular dia-
gram is legal, apply the rules of Fig. 5.21 in reverse to try to reduce the diagram to the sim-
plest activity diagram. If it’s reducible to the simplest activity diagram, the original
diagram is structured; otherwise, it isn’t.

.
PEEETD

Fig. 5.25 | Activity diagram with illegal syntax.

Structured programming promotes simplicity. Bohm and Jacopini have given us the
result that only #hree forms of control are needed:

e Sequence
e Selection
¢ Repetition
The sequence structure is trivial. Simply list the statements to execute in the order in which

they should execute.
Selection is implemented in one of three ways:

* if statement (single selection)
e if...else statement (double selection)
* switch statement (multiple selection)

It’s straightforward to prove that the simple if statement is sufficient to provide any
form of selection—everything that can be done with the if...e1se statement and the
switch statement can be implemented (although perhaps not as clearly and efficiently) by
combining if statements.

Repetition is implemented in one of three ways:

* while statement
* do...while statement
e for statement

I¢’s straightforward to prove that the whiTe statement is sufficient to provide any form of
repetition. Everything that can be done with the do...while statement and the for state-
ment can be done (although perhaps not as smoothly) with the while statement.

Combining these results illustrates that 2y form of control ever needed in a C++ pro-
gram can be expressed in terms of the following:

5.11 Wrap-Up 191

* sequence
e if statement (selection)
* while statement (repetition)

and that these control statements can be combined in only fwo ways—stacking and nest-
ing. Indeed, structured programming promotes simplicity.

5.11 Wrap-Up

We've now completed our introduction to control statements, which enable you to con-
trol the flow of execution in programs. Chapter 4 discussed the if, if...e1se and while
statements. This chapter demonstrated the for, do...while and switch statements. We
showed that any algorithm can be developed using combinations of the sequence struc-
ture, the three types of selection statements—if, if...e1se and switch—and the three
types of repetition statements—uwhile, do...while and for. We discussed how you can
combine these building blocks to utilize proven program construction and problem-solv-
ing techniques. You used the break and continue statements to alter a repetition state-
ment’s flow of control. We also introduced logical operators, which enable you to use
more complex conditional expressions in control statements. Finally, we examined the
common errors of confusing the equality and assignment operators and provided sugges-
tions for avoiding these errors. In Chapter 6, we examine functions in greater depth.

Summary

Section 5.2 Essentials of Counter-Controlled Repetition
e In C++, it’s more precise to call a variable declaration that also reserves memory a definition

(p. 158).

Section 5.3 for Repetition Statement
* The for repetition statement (p. 159) handles all the details of counter-controlled repetition.

* The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
statement

where initialization initializes the control variable, loopContinuationCondition determines
whether the loop should continue executing and increment increments or decrements the control
variable.

* Typically, for statements are used for counter-controlled repetition and while statements are
used for sentinel-controlled repetition.

* The scope of a variable (p. 161) specifies where it can be used in a program.

* The comma operator (p. 161) has the lowest precedence of all C++ operators. The value and type
of a comma-separated list of expressions is the value and type of the rightmost expression in the list.

e The initialization, loop-continuation condition and increment expressions of a for statement
can contain arithmetic expressions. Also, the increment of a for statement can be negative.

o If the loop-continuation condition in a for header is initially false, the body of the for state-
ment is not performed. Instead, execution proceeds with the statement following the for.

192 Chapter 5 Control Statements: Part 2; Logical Operators

Section 5.4 Examples Using the for Statement
¢ Standard library function pow(x, y) (p. 165) calculates the value of x raised to the yth power.
Function pow takes two arguments of type double and returns a double value.

 Parameterized stream manipulator setw (p. 167) specifies the field width in which the next value
output should appear, right justified by default. If the value is larger than the field width, the field
width is extended to accommodate the entire value. Stream manipulator Teft (p. 167) causes a
value to be left justified and right (p. 167) can be used to restore right justification.

¢ Sticky output-formatting settings settings (p. 167) remain in effect until they’re changed.

Section 5.5 do...while Repetition Statement
* The do...while repetition statement tests the loop-continuation condition at the end of the loop,
so the body of the loop will be executed at least once. The format for the do...while statement is

do
{

statement
} while (condition);

Section 5.6 switch Multiple-Selection Statement

 The switch multiple-selection statement (p. 169) performs different actions based on its control-
ling expression’s value.

e Function cin.get() reads one character from the keyboard. Characters normally are stored in
variables of type char (p. 173). A character can be treated either as an integer or as a character.

e A switch statement consists of a series of case labels (p. 174) and an optional default case
(p. 174).

¢ The expression in the parentheses following switch is called the controlling expression (p. 174).
The switch statement compares the value of the controlling expression with each case label.

* Consecutive cases with no statements between them perform the same set of statements.

* Each case label can specify only one integral constant expression.

e Fach case can have multiple statements. The switch selection statement differs from other con-
trol statements in that it does not require braces around multiple statements in each case.

e Ci++ provides several data types to represent integers—int, char, short, Tong and Tong Tong. The
range of integer values for each type is platform dependent.

e C++11 allows you to provide a default value for a data member when you declare it in the class
declaration.

Section 5.7 break and continue Statements
* The break statement (p. 178), when executed in one of the repetition statements (for, while and
do...while), causes immediate exit from the statement.

* The continue statement (p. 179), when executed in a repetition statement, skips any remaining
statements in the loop’s body and proceeds with the next iteration of the loop. In a while or
do...while statement, execution continues with the next evaluation of the condition. In a for
statement, execution continues with the increment expression in the for statement header.

Section 5.8 Logical Operators
* Logical operators (p. 180) enable you to form complex conditions by combining simple condi-
tions. The logical operators are && (logical AND), || (logical OR) and ! (logical negation).

 The && (logical AND, p. 180) operator ensures that two conditions are both true.

Self-Review Exercises 193

e The || (logical OR, p. 181) operator ensures that either or both of two conditions are true.

* An expression containing & or | | operators evaluates only until the truth or falsehood of the ex-
pression is known. This performance feature for the evaluation of logical AND and logical OR
expressions is called short-circuit evaluation (p. 182).

e The ! (logical NOT, also called logical negation; p. 182) operator enables a programmer to “re-
verse” the meaning of a condition. The unary logical negation operator is placed before a condi-
tion to choose a path of execution if the original condition (without the logical negation
operator) is false. In most cases, you can avoid using logical negation by expressing the condi-
tion with an appropriate relational or equality operator.

* When used as a condition, any nonzero value implicitly converts to true; 0 (zero) implicitly con-
verts to false.

* By default, boo1 values true and false are displayed by cout as 1 and 0, respectively. Stream ma-
nipulator boolalpha (p. 183) specifies that the value of each boo1 expression should be displayed
as either the word “true” or the word “false.”

Section 5.9 Conﬁtszng the Equality (==) and Assignment (=) Operators
* Any expression that produces a value can be used in the decision portion of any control state-
ment. If the value of the expression is zero, it’s treated as false, and if the value is nonzero, it’s
treated as true.

* An assignment produces a value—namely, the value assigned to the variable on the left side of
the assignment operator.

Section 5.10 Structured Programming Summary
* Any form of control can be expressed in terms of sequence, selection and repetition statements,
and these can be combined in only two ways—stacking and nesting.

Self-Review Exercises

5.1 State whether the following are #rue or false. If the answer is false, explain why.

a) The default case is required in the switch selection statement.

b) The break statement is required in the default case of a switch selection statement to
exit the switch properly.

c) The expression (x > y&& a < b) is true if either the expression x > y is true or the
expression a < b is true.

d) An expression containing the || operator is true if either or both of its operands are
true.

5.2 Write a C++ statement or a set of C++ statements to accomplish each of the following:

a) Sum the odd integers between 1 and 99 using a for statement. Use the unsigned int
variables sum and count.

b) Print the value 333.546372 in a 15-character field with precisions of 1, 2 and 3. Print
each number on the same line. Left-justify each number in its field. What three values
print?

¢) Calculate the value of 2.5 raised to the power 3 using function pow. Print the result with
a precision of 2 in a field width of 10 positions. What prints?

d) Print the integers from 1 to 20 using awhile loop and the unsigned int counter variable
x. Print only 5 integers per line. [Hint: When x % 5 is 0, print a newline character; oth-
erwise, print a tab character.]

¢) Repeat Exercise 5.2(d) using a for statement.

194 Chapter 5 Control Statements: Part 2; Logical Operators

5.3 Find the errors in each of the following code segments and explain how to correct them.
a) unsigned int x = 1;
while (x <=);
+4X;
}
b) for (double y = ;y = 3y +=.1)

cout << y << endl;
c) switch (n)
{
case
cout << << endl;
case
cout << << endl;
break;
default:
cout << << endl;
break;
}
d) The following code should print the values 1 to 10.
unsigned int n = 1;
while (n <)
cout << n++ << endl;

Answers to Self-Review Exercises

5.1 a) False. The default case is optional. Nevertheless, it’s considered good software engi-
neering to always provide a default case.

b) False. The break statement is used to exit the switch statement. The break statement
is not required when the default case is the last case. Nor will the break statement be
required if having control proceed with the next case makes sense.

¢) False. When using the && operator, both of the relational expressions must be true for
the entire expression to be true.

d) True.

5.2 a) unsigned int sum = 0;
for (unsigned int count = 1; count <= ; count +=)
sum += count;
b) cout << fixed << Tleft

<< setprecision() << setw() <<
<< setprecision() << setw() <<
<< setprecision() << setw() <<
<< endl;
Output is:
333.5 333.55 333.546
C) cout << fixed << setprecision() << setw() << pow(,) << endl;
Output is:
15.63
d) unsigned int x = 1;
while (x <=)

{

Exercises 195

if (x %5 ==0)
cout << x << endl;
else
cout << X << 3

X
}
e) for (unsigned int x = 1; x <= HE=> D)
{
if (x % =)
cout << x << endl;
else
cout << X << -
}
5.3 a) Error: The semicolon after the while header causes an infinite loop.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for repetition statement.
Correction: Use an unsigned int and perform the proper calculation to get the values
you desire.

for (unsigned inty = 1; y != RS SAD)
cout << (static_cast< double >(y) /) << endl;

¢) Error: Missing break statement in the first case.

Correction: Add a break statement at the end of the first case. This is not an error if you
want the statement of case 2: to execute every time the case 1: statement executes.

d) Error: Improper relational operator used in the loop-continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

Exercises
5.4 (Find the Code Errors) Find the error(s), if any, in each of the following:

a) For (unsigned int x = , X >= 1, 44X)
cout << x << endT;
b) The following code should print whether integer value is odd or even:

switch (value %)

{
case
cout << << endl;
case
cout << << endl;
}

¢) The following code should output the odd integers from 19 to 1:

for (unsigned int x = ; X >=1; X +=)
cout << x << endl;

d) The following code should output the even integers from 2 to 100:

unsigned int counter = 2;

do

{
cout << counter << endl;
counter += /;

} While (counter < DE

196 Chapter 5 Control Statements: Part 2; Logical Operators

5.5 Summing Integers) Write a program that uses a for statement to sum a sequence of inte-
g [nteg prog q

gers. Assume that the first integer read specifies the number of values remaining to be entered. Your

program should read only one value per input statement. A typical input sequence might be

5 100 200 300 400 500
where the 5 indicates that the subsequent 5 values are to be summed.

5.6 (Averaging Integers) Write a program that uses a for statement to calculate the average of
several integers. Assume the last value read is the sentinel 9999. For example, the sequence 10 8 11 7
99999 indicates that the program should calculate the average of all the values preceding 9999.

5.7 (What Does This Program Do?) What does the following program do?

| // Exercise 5.7: ex05_07.cpp

2 // What does this program do?

3 #include <iostream>

4 using namespace std;

5

6 1int mainQ)

7 {

8 unsigned int x; // declare x

9 unsigned int y; // declare y

10

11 // prompt user for input

12 cout << H
13 cin >> x >> y; // read values for x and y

14

15 for (unsigned int i = 1; i <=vy; ++i) // count from 1 to y
16 {

17 for (unsigned int j = 1; j <= x; ++j) // count from 1 to x
18 cout << ; // output @

19
20 cout << endl; // begin new Tine
21 } // end outer for

22 } // end main

5.8 (Find the Smallest Integer) Write a program that uses a for statement to find the smallest
of several integers. Assume that the first value read specifies the number of values remaining.

5.9 (Product of Odd Integers) Write a program that uses a for statement to calculate and print
the product of the odd integers from 1 to 15.

5.10 (Factorials) The factorial function is used frequently in probability problems. Using the
definition of factorial in Exercise 4.34, write a program that uses a for statement to evaluate the fac-
torials of the integers from 1 to 5. Print the results in tabular format. What difficulty might prevent
you from calculating the factorial of 20?

5.11 (Compound Interest) Modify the compound interest program of Section 5.4 to repeat its
steps for the interest rates 5%, 6%, 7%, 8%, 9% and 10%. Use a for statement to vary the interest
rate.

5.12 (Drawing Patterns with Nested for Loops) Write a program that uses for statements to
print the following patterns separately, one below the other. Use for loops to generate the patterns.
All asterisks (*) should be printed by a single statement of the form cout << '*'; (this causes the
asterisks to print side by side). [Hin#: The last two patterns require that each line begin with an ap-
propriate number of blanks. Extra credit: Combine your code from the four separate problems into
a single program that prints all four patterns side by side by making clever use of nested for loops.]

Exercises 197

ol *

5.13 (Bar Chart) One interesting application of computers is drawing graphs and bar charts.
Write a program that reads five numbers (each between 1 and 30). Assume that the user enters only
valid values. For each number that is read, your program should print a line containing that number
of adjacent asterisks. For example, if your program reads the number 7, it should pring s,

5.14 (Calculating Total Sales) A mail order house sells five different products whose retail prices
are: product 1 — $2.98, product 2—$4.50, product 3—$9.98, product 4—$4.49 and product 5—
$6.87. Write a program that reads a series of pairs of numbers as follows:

a) product number

b) quantity sold

Your program should use a switch statement to determine the retail price for each product. Your
program should calculate and display the total retail value of all products sold. Use a sentinel-con-
trolled loop to determine when the program should stop looping and display the final results.

5.15 (GradeBook Modification) Modify the GradeBook program of Figs. 5.9-5.11 to calculate the
grade-point average. A grade of A is worth 4 points, B is worth 3 points, and so on.

5.16 (Compound Interest Calculation) Modify Fig. 5.6 so it uses only integers to calculate the com-
pound interest. [Hint: Treat all monetary amounts as numbers of pennies. Then “break” the result into
its dollar and cents portions by using the division and modulus operations. Insert a period.]

5.17 (What Prints?) Assume i = 1, j = 2, k = 3 and m = 2. What does each statement print?

a) cout << (i == 1) << endl;

b) cout << (j == 3) << endl;

c) cout << (i >=18&% j <4) << endl;

d) cout << (m <= & k < m) << endl;

e) cout << (j>=1 || k ==m) << endl;

f) cout << Ck+m<3 || 3 -3 >= k) << endl;
g) cout << (!m) << endl;

h) cout << ('Cj - m)) << endl;

i) cout << (!'Ck >m)) << endl;

5.18 (Number Systems Table) Write a program that prints a table of the binary, octal and
hexadecimal equivalents of the decimal numbers in the range 1-256. If you are not familiar with
these number systems, read Appendix D. [Hint: You can use the stream manipulators dec, oct and
hex to display integers in decimal, octal and hexadecimal formats, respectively.]
5.19 (Calculating) Calculate the value of T from the infinite series

4 4 4 4 4
44— ——— 4

357 9 11

Print a table that shows the approximate value of T after each of the first 1000 terms of this series.

5.20 (Pythagorean Triples) A right triangle can have sides that are all integers. A set of three in-
teger values for the sides of a right triangle is called a Pythagorean triple. These three sides must sat-
isfy the relationship that the sum of the squares of two of the sides is equal to the square of the

198 Chapter 5 Control Statements: Part 2; Logical Operators

hypotenuse. Find all Pythagorean triples for sidel, side2 and hypotenuse all no larger than 500.
Use a triple-nested for loop that tries all possibilities. This is an example of brute force computing.
You'll learn in more advanced computer science courses that there are many interesting problems
for which there’s no known algorithmic approach other than sheer brute force.

5.21 (Calculating Salaries) A company pays its employees as managers (who receive a fixed weekly
salary), hourly workers (who receive a fixed hourly wage for up to the first 40 hours they work and
“time-and-a-half”—1.5 times their hourly wage—for overtime hours worked), commission workers
(who receive $250 plus 5.7 percent of their gross weekly sales), or pieceworkers (who receive a fixed
amount of money per item for each of the items they produce—each pieceworker in this company
works on only one type of item). Write a program to compute the weekly pay for each employee. You
do not know the number of employees in advance. Each type of employee has its own pay code: Man-
agers have code 1, hourly workers have code 2, commission workers have code 3 and pieceworkers
have code 4. Use a switch to compute each employee’s pay according to that employee’s paycode.
Within the switch, prompt the user (i.e., the payroll clerk) to enter the appropriate facts your pro-
gram needs to calculate each employee’s pay according to that employee’s paycode.

5.22 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, || and !. De
Morgan’s laws can sometimes make it more convenient for us to express a logical expression. These
laws state that the expression ! (conditionl && condition2) is logically equivalent to the expression
('conditionl || !condition2). Also, the expression ! (conditionl || condition2) is logically equiv-
alent to the expression (!conditionl & condition2). Use De Morgan’s laws to write equivalent
expressions for each of the following, then write a program to show that the original expression and
the new expression in each case are equivalent:

) 1(x<5)&&!ICy>7)

b) 1Ca==b) 1l !Cg!=5)

) I((x<=8)& (y>4))

d) 1CCi>a) 1 (i=6))
5.23 (Diamond of Asterisks) Write a program that prints the following diamond shape. You may

use output statements that print a single asterisk (¥), a single blank or a single newline. Maximize
your use of repetition (with nested for statements) and minimize the number of output statements.

5.24 (Diamond of Asterisks Modification) Modify Exercise 5.23 to read an odd number in the
range 1 to 19 to specify the number of rows in the diamond, then display a diamond of the appro-
priate size.

5.25 (Removing break and continue) A criticism of the break and continue statements is that
each is unstructured. These statements can always be replaced by structured statements. Describe in
general how you’d remove any break statement from a loop in a program and replace it with some
structured equivalent. [Hint: The break statement leaves a loop from within the body of the loop.
Another way to leave is by failing the loop-continuation test. Consider using in the loop-continua-
tion test a second test that indicates “early exit because of a ‘break’ condition.”] Use the technique
you developed here to remove the break statement from the program of Fig. 5.13.

Making a Difference 199

5.26 (What Does This Code Do?) What does the following program segment do?

1 for (unsigned int i = 1; i <= 5; ++i)

2

3 for (unsigned int j = 1; j <= 3; ++j)
4 {

5 for (unsigned int k = 1; k <= 4; ++k)
6 cout << ;

7

8 cout << endl;

9 } // end 1inner for

10

11 cout << endl;

12 } // end outer for

5.27 (Removing the continue Statement) Describe in general how you’d remove any continue
statement from a loop in a program and replace it with some structured equivalent. Use the tech-
nique you developed here to remove the continue statement from the program of Fig. 5.14.

5.28 (“The Twelve Days of Christmas” Song) Write a program that uses repetition and switch
statements to print the song “The Twelve Days of Christmas.” One switch statement should be
used to print the day (i.e., “first,” “second,” etc.). A separate switch statement should be used to
print the remainder of each verse. Visit the website www.1l2days.com/library/carols/
12daysofxmas.htm for the complete lyrics to the song.

5.29 (Peter Minuit Problem) Legend has it that, in 1626, Peter Minuit purchased Manhattan
Island for $24.00 in barter. Did he make a good investment? To answer this question, modify the
compound interest program of Fig. 5.6 to begin with a principal of $24.00 and to calculate the
amount of interest on deposit if that money had been kept on deposit until this year (e.g., 387 years
through 2013). Place the for loop that performs the compound interest calculation in an outer for
loop that varies the interest rate from 5% to 10% to observe the wonders of compound interest.

Making a Difference

5.30 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film An Inconvenient Truth, featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1-4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of the websites where you found your facts.

5.31 (Tax Plan Alternatives; The “Fairlax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www. fairtax.org/site/PageServer?pagename=calculator
Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most

other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it

www.12days.com/library/carols/12daysofxmas.htm
www.12days.com/library/carols/12daysofxmas.htm
www.fairtax.org/site/PageServer?pagename=calculator

200 Chapter 5 Control Statements: Part 2; Logical Operators

would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various expense categories they have (e.g., housing, food, clothing,
transportation, education, health care, vacations), then prints the estimated FairTax that person
would pay.

5.32 (Facebook User Base Growth) There are approximately 2.5 billion people on the Internet
as of January 2013. Facebook reached one billion users in October of 2012. In this exercise, you'll
write a program to determine when Facebook will reach 2.5 billion people if it were to grow at fixed
monthly percentage rates of 2%, 3%, 4% or 5%. Use the techniques you learned in Fig. 5.6.

Functions and an
Introduction to Recursion

Form ever follows function.
—Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Am‘wer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.

—Frantz Fanon

Objectives
In this chapter you'll learn:

= To construct programs
modularly from functions.

m To use common math library
functions.

m The mechanisms for passing
data to functions and
returning results.

= How the function call/return
mechanism is supported by
the function call stack and
activation records.

= To use random number
generation to implement
game-playing applications.

= How the visibility of
identifiers is limited to
specific regions of programs.

= To write and use recursive
functions.

202 Chapter 6 Functions and an Introduction to Recursion

6.1 Introduction 6.12 Function Call Stack and Activation
6.2 Program Components in C++ Records

.17 Unary Scope Resolution Operator

6.3 Math Library Functions 6.13 Functions with Empty Parameter Lists
6.4 Function Definitions with Multiple 6.14 Inline Functions
Parameters 6.15 References and Reference Parameters
6.5 Function Prototypes and Argument 6.16 Default Arguments
Coercion 6
6

6.6 C++ Standard Library Headers

6.7 Case Study: Random Number
Generation

6.8 Case Study: Game of Chance;
Introducing enum

6.9 C++11 Random Numbers
6.10 Storage Classes and Storage Duration
6.11 Scope Rules

.18 Function Overloading
6.19 Function Templates
6.20 Recursion

6.21 Example Using Recursion: Fibonacci
Series

6.22 Recursion vs. Iteration
6.23 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

6.1 Introduction

Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters of this book. Experience has shown that the best
way to develop and maintain a large program is to construct it from small, simple pieces,
or components. This technique is called divide and conquer.

We'll overview a portion of the C++ Standard Library’s math functions. Next, you’ll
learn how to declare a function with more than one parameter. We'll also present addi-
tional information about function prototypes and how the compiler uses them to convert
the type of an argument in a function call to the type specified in a function’s parameter
list, if necessary.

Next, we'll take a brief diversion into simulation techniques with random number
generation and develop a version of a popular casino dice game that uses most of the pro-
gramming techniques you’ve learned.

We then present C++’s storage-class specifiers and scope rules. These determine the
period during which an object exists in memory and where its identifier can be referenced in
a program. You'll learn how C++ keeps track of which function is currently executing, how
parameters and other local variables of functions are maintained in memory and how a func-
tion knows where to return after it completes execution. We discuss topics that help improve
program performance—inline functions that can eliminate the overhead of a function call
and reference parameters that can be used to pass large data items to functions efficiently.

Many of the applications you develop will have more than one function of the same
name. This technique, called function overloading, is used to implement functions that
perform similar tasks for arguments of different types or possibly for different numbers of
arguments. We consider function templates—a mechanism for defining a family of over-
loaded functions. The chapter concludes with a discussion of functions that call them-
selves, either directly, or indirectly (through another function)—a topic called recursion.

6.2 Program Components in C++ 203

6.2 Program Components in C++

As you’ve seen, C++ programs are typically written by combining new functions and class-
es you write with “prepackaged” functions and classes available in the C++ Standard Li-
brary which provides a rich collection of functions for common mathematical calculations,
string manipulations, character manipulations, input/output, error checking and many
other useful operations.

Functions allow you to modularize a program by separating its tasks into self-con-
tained units. You’ve used a combination of library functions and your own functions in
every program you've written. Functions you write are referred to as user-defined func-
tions. The statements in function bodies are written only once, are reused from perhaps sev-
eral locations in a program and are hidden from other functions.

There are several motivations for modularizing a program with functions:

* One is the divide-and-conquer approach.

* Another is software reuse. For example, in eatlier programs, we did not have to
define how to read a line of text from the keyboard—C++ provides this capability
via the getline function of the <string> header.

e A third motivation is to avoid repeating code.

e Also, dividing a program into meaningful functions makes the program easier to
debug and maintain.

To promote software reusability, every function should be limited to performing a single,

+ 5“ Software Engineering Observation 6.1
I8 well-defined task, and the name of the function should express that task effectively.

As you know, a function is invoked by a function call, and when the called function
completes its task, it either returns a result or simply returns control to the caller. An
analogy to this program structure is the hierarchical form of management (Figure 6.1). A
boss (similar to the calling function) asks a worker (similar to the called function) to per-
form a task and report back (i.c., return) the results after completing the task. The boss
function does 7ot know how the worker function performs its designated tasks. The
worker may also call other worker functions, unbeknownst to the boss. This hiding of
implementation details promotes good software engineering. Figure 6.1 shows the boss

boss
workerl worker2 worker3
worker4 worker5

Fig. 6.1 | Hierarchical boss function/worker function relationship.

204 Chapter 6 Functions and an Introduction to Recursion

function communicating with several worker functions. The boss function divides the
responsibilities among the worker functions, and workerl acts as a “boss function” to
worker4 and workers.

6.3 Math Library Functions

Sometimes functions, such as main, are nor members of a class. Such functions are called
global functions. Like a class’s member functions, the function prototypes for global func-
tions are placed in headers, so that the global functions can be reused in any program that
includes the header and that can link to the function’s object code. For example, recall that
we used function pow of the <cmath> header to raise a value to a power in Figure 5.6. We
introduce various functions from the <cmath> header here to present the concept of global
functions that do not belong to a particular class.

The <cmath> header provides a collection of functions that enable you to perform
common mathematical calculations. For example, you can calculate the square root of
900.0 with the function call

sqrt(900.0)

The preceding expression evaluates to 30.0. Function sqrt takes an argument of type dou-
ble and returns a double result. There’s no need to create any objects before calling func-
tion sqrt. Also, // functions in the <cmath> header are global functions—therefore, each
is called simply by specifying the name of the function followed by parentheses containing
the function’s arguments. If you call sqrt with a negative argument, the function sets a
global variable named errno to the constant value EDOM. The variable errno and the con-
stant EDOM are defined in the <cerrno> header. We'll discuss global variables in
Section 6.10.

= Error-Prevention Tip 6.1

r -~ 3
| g Do not call sqrt with a negative argument. For industrial-strength code, always check
o that the arguments you pass to math functions are valid.

Function arguments may be constants, variables or more complex expressions. If
c=13.0,d=3.0and f = 4.0, then the statement
cout << sqrt(c + d * f) << endl;

displays the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Some math library func-
tions are summarized in Fig. 6.2. In the figure, the variables x and y are of type doubTe.

Function Description Example

ceil(x) rounds x to the smallest inte- ceil(9.2) is 10.0
ger not less than x ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x cos(0.0) is 1.0

(2 in radians)

Fig. 6.2 | Math library functions. (Part I of 2.)

6.4 Function Definitions with Multiple Parameters 205

Function Description Example

exp(x) exponential function ¢ exp(1.0) is 2.718282
exp(2.0) is 7.389056

fabs(x) absolute value of x fabs(5.1) is 5.1
fabs(0.0) is 0.0
fabs(-8.76) is 8.76

floor(x) rounds x to the largest integer floor(9.2) is 9.0
not greater than x floor(-9.8) is -10.0
fmod(x, y) remainder of x/y as a floating- fmod(2.6, 1.2) is 0.2

point number

Tog(x) natural logarithm of x (base ¢) log(2.718282) is 1.0
Tog(7.389056) is 2.0

10910(x) logarithm of x (base 10) 10g10(10.0) is 1.0
Tog10(100.0) is 2.0

pow(X, y) x raised to power y (¥) pow(2, 7) is 128
pow(9, .5) is 3
sin(x) trigonometric sine of x sin(0.0) is 0
(x in radians)

sqrt(x) square root of x (where x is a sqrt(9.0) is 3.0
nonnegative value)

tan(x) trigonometric tangent of x tan(0.0) is 0
(2 in radians)

Fig. 6.2 | Math library functions. (Part 2 of 2.)

6.4 Function Definitions with Multiple Parameters

Let’s consider functions with multiple parameters. Figures 6.3-6.5 modify class GradeBook
by including a user-defined function called maximum that determines and returns the larg-
est of three int grades. When the application executes, the main function (lines 5-13 of
Fig. 6.5) creates one GradeBook object (line 8) and calls its inputGrades member function
(line 11) to read three integer grades from the user. In class GradeBook’s implementation
file (Fig. 6.4), lines 52—53 of member function inputGrades prompt the user to enter
three integer values and read them from the user. Line 56 calls member function maximum
(defined in lines 60-73). Function maximum determines the largest value, then the return
statement (line 72) returns that value to the point at which function inputGrades invoked
maximum (line 56). Member function inputGrades then stores maximum’s return value in
data member maximumGrade. This value is then output by calling function display-
GradeReport (line 12 of Fig. 6.5). [Note: We named this function displayGradeReport
because subsequent versions of class GradeBook will use this function to display a complete
grade report, including the maximum and minimum grades.] In Chapter 7, we’ll enhance
class GradeBook to process sets of grades.

206 Chapter 6 Functions and an Introduction to Recursion

1 // Fig. 6.3: GradeBook.h
2 // Definition of class GradeBook that finds the maximum of three grades.
3 // Member functions are defined in GradeBook.cpp
4 #include <string> // program uses C++ standard string class
5
6 // GradeBook class definition
7 class GradeBook
8 {
9 public:
10 explicit GradeBook(std::string); // initializes course name
11 void setCourseName(std::string); // set the course name
12 std::string getCourseName() const; //retrieve the course name
13 void displayMessage() const; // display a welcome message
14 void inputGrades(); // input three grades from user
15 void displayGradeReport() const; // display report based on the grades
16 int maximum(int, int, int) const; // determine max of 3 values
17 private:
18 std::string courseName; // course name for this GradeBook
19 int maximumGrade; // maximum of three grades
20 }; // end class GradeBook
Fig. 6.3 | Definition of class GradeBook that finds the maximum of three grades.
1 // Fig. 6.4: GradeBook.cpp
2 // Member-function definitions for class GradeBook that
3 // determines the maximum of three grades.
4 #include <iostream>
5 using namespace std;
6
7 #include "GradeBook.h" // include definition of class GradeBook
8
9 // constructor initializes courseName with string supplied as argument;
10 // initializes maximumGrade to O
Il GradeBook::GradeBook(string name)
12 : maximumGrade(0) // this value will be replaced by the maximum grade
13 {
14 setCourseName(name); // validate and store courseName
I5 } // end GradeBook constructor
16
17 // function to set the course name; Timits name to 25 or fewer characters
18 void GradeBook: :setCourseName(string name)
19 {
20 if (name.size() <= 25) // if name has 25 or fewer characters
21 courseName = name; // store the course name in the object
22 else // if name is longer than 25 characters
23 { // set courseName to first 25 characters of parameter name
24 courseName = name.substr(0, 25); // select first 25 characters
25 cerr << "Name \"" << name << "\" exceeds maximum length (25).\n"
26 << "Limiting courseName to first 25 characters.\n" << endl;
27 } // end if...else
28 1} // end function setCourseName
Fig. 6.4 | Member-function definitions for class GradeBook that determines the maximum of

three grades. (Part | of 2.)

6.4 Function Definitions with Multiple Parameters 207

29
30 // function to retrieve the course name
31 string GradeBook::getCourseName() const

32 {

33 return courseName;

34 1} // end function getCourseName
35

36 // display a welcome message to the GradeBook user
37 void GradeBook: :displayMessage() const

38 {

39 // this statement calls getCourseName to get the

40 // name of the course this GradeBook represents

41 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
42 << endl;

43 1} // end function displayMessage

44

45 // dinput three grades from user; determine maximum
46 void GradeBook: :inputGrades()

47 {

48 int gradel; // first grade entered by user
49 int grade2; // second grade entered by user
50 int grade3; // third grade entered by user
51

52 cout << "Enter three integer grades: ";

53 cin >> gradel >> grade2 >> grade3;

54

55 // store maximum in member maximumGrade

56 maximumGrade = maximum(gradel, grade2, grade3);
57 } // end function inputGrades

58

59 // returns the maximum of its three integer parameters
60 int GradeBook::maximum(int x, int y, int z) const

61 {

62 int maximumValue = x; // assume x is the largest to start
63

64 // determine whether y is greater than maximumValue
65 if (y > maximumvValue)

66 maximumValue = y; // make y the new maximumValue
67

68 // determine whether z is greater than maximumValue
69 if (z > maximumvValue)

70 maximumValue = z; // make z the new maximumValue
71

72 return maximumValue;

73 1} // end function maximum

74

75 // display a report based on the grades entered by user
76 void GradeBook: :displayGradeReport() const

77 {
78 // output maximum of grades entered
79 cout << "Maximum of grades entered: " << maximumGrade << endl;

80 1} // end function displayGradeReport

Fig. 6.4 | Member-function definitions for class GradeBook that determines the maximum of
three grades. (Part 2 of 2.)

208 Chapter 6 Functions and an Introduction to Recursion

1 // Fig. 6.5: fig06_05.cpp

2 // Create GradeBook object, input grades and display grade report.
3 #include // include definition of class GradeBook

4

5 dnt mainQ

6 {

7 // create GradeBook object

8 GradeBook myGradeBook ();

9
10 myGradeBook.displayMessage(); // display welcome message
11 myGradeBook.inputGrades(); // read grades from user
12 myGradeBook.displayGradeReport(); // display report based on grades

13 } // end main

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 86 67 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 86 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 75 86
Maximum of grades entered: 86

Fig. 6.5 | Create GradeBook object, input grades and display grade report.

The commas used in line 56 of Fig. 6.4 to separate the arguments to function maximum
are not comma operators as discussed in Section 5.3. The comma operator guarantees that
its operands are evaluated left ro right. The order of evaluation of a function’s arguments,
however, is not specified by the C++ standard. Thus, different compilers can evaluate
Jfunction arguments in different orders. The C++ standard does guarantee that all
arguments in a function call are evaluated before the called function executes.

i Software Engineering Observation 6.2
-

- Portability Tip 6.1
- Sometimes when a function’s arguments are expressions, such as those with calls to other
Sl functions, the order in which the compiler evaluates the arguments could affect the values
of one or more of the arguments. If the evaluation order changes between compilers, the
argument values passed to the function could vary, causing subtle logic errors.

i

6.4 Function Definitions with Multiple Parameters 209

z<= Error-Prevention Tip 6.2
" Ifyou have doubts about the order of evaluation of a function’s arguments and whether
" the order would affect the values passed to the function, evaluate the arguments in sepa-
rate assignment statements before the function call, assign the result of each expression to
a local variable, then pass those variables as arguments to the function.

Function Prototype for maximum

Member function maximum’s prototype (Fig. 6.3, line 16) indicates that the function re-
turns an integer value, has the name maximum and requires three integer parameters to per-
form its task. The function’s first line (Fig. 6.4, line 60) matches the function prototype
and indicates that the parameter names are x, y and z. When maximum is called (Fig. 6.4,
line 56), the parameter x is initialized with the value of the argument gradel, the param-
eter y is initialized with the value of the argument grade2 and the parameter z is initialized
with the value of the argument grade3. There must be one argument in the function call
for each parameter (also called a formal parameter) in the function definition.

Notice that multiple parameters are specified in both the function prototype and the
function header as a comma-separated list. The compiler refers to the function prototype
to check that calls to maximum contain the correct number and types of arguments and that
the types of the arguments are in the correct order. In addition, the compiler uses the
prototype to ensure that the value returned by the function can be used correctly in the
expression that called the function (e.g., a function call that returns void cannot be used
as the right side of an assignment statement). Each argument must be consistent with the
type of the corresponding parameter. For example, a parameter of type doubTe can receive
values like 7.35, 22 or —0.03456, but not a string like "he17o". If the arguments passed to
a function do nor match the types specified in the function’s prototype, the compiler
attempts to convert the arguments to those types. Section 6.5 discusses this conversion.

= Common Programming Error 6.1

Ve S
| g . . .
'z Declaring function parameters of the same type as double x, y instead of double x,
double y is a syntax error—a type is required for each parameter in the parameter list.

7 Common Programming Error 6.2

"Lz Compilation errors occur if the function prototype, header and calls do not all agree in the
number, type and order of arguments and parameters, and in the return type. Linker er-

rors and other types of errors can occur as well as you'll see later in the book.

A function that has many parameters may be performing too many tasks. Consider
S8 dividing the function into smaller functions that perform the separate tasks. Limit the
[function header to one line if possible.

+ i'w Software Engineering Observation 6.3
4 S

Logic of Function maximum

To determine the maximum value (lines 6073 of Fig. 6.4), we begin with the assumption
that parameter x contains the largest value, so line 62 of function maximum declares local
variable maximumvalue and initializes it with the value of parameter x. Of course, it’s pos-

210 Chapter 6 Functions and an Introduction to Recursion

sible that parameter y or z contains the actual largest value, so we must compare each of
these values with maximumvValue. The if statement in lines 65—-66 determines whether y is
greater than maximumvalue and, if so, assigns y to maximumvalue. The 1 f statement in lines
69-70 determines whether z is greater than maximumvalue and, if so, assigns z to maxi-
mumValue. At this point the largest of the three values is in maximumvalue, so line 72 re-
turns that value to the call in line 56. When program control returns to the point in the
program where maximum was called, maximum’s parameters x, y and z are no longer accessi-
ble to the program.

Returning Control from a Function to Its Caller

There are several ways to return control to the point at which a function was invoked. If
the function does 7oz return a result (i.e., it has a void return type), control returns when
the program reaches the function-ending right brace, or by execution of the statement

return;
If the function does return a result, the statement
return expression;

evaluates expression and returns the value of expression to the caller. Some compilers issue
errors and others issue warnings if you do 7ot provide an appropriate return statement in
a function that’s supposed to return a result.

6.5 Function Prototypes and Argument Coercion

A function prototype (also called a function declaration) tells the compiler the name of a
function, the type of data it returns, the number of parameters it expects to receive, the types
of those parameters and the order in which the parameters of those types are expected.

i« Software Engineering Observation 6.4

* Function prototypes are required unless the function is defined before ir is used. Use

X8 #include preprocessing directives to obtain function prototypes for the C++ Standard
Library functions from the headers of the appropriate libraries (e.g., the prototype for sqrt
is in header <cmath>; a partial list of C++ Standard Library headers appears in
Section 6.6). Also use #include to obtain headers containing function prototypes written
by you or other programmers.

\ Ifa function is defined before it’s invoked, then its definition also serves as the function’s
= prototype, so a separate prototype is unnecessary. If a function is invoked before it’s de-
fined, and that function does not have a function prototype, a compilation error occurs.

L -zl <= Common Programming Error 6.3
T

e Software Engineering Observation 6.5
. Always provide function prototypes, even though it's possible to omit them when functions
55 are defined before they're used. Providing the prototypes avoids tying the code to the order
in which functions are defined (which can easily change as a program evolves).

6.5 Function Prototypes and Argument Coercion 211

Function Signatures
The portion of a function prototype that includes the name of the function and the types of
its arguments is called the function signature or simply the signature. The function signa-
ture does not specify the function’s return type. Functions in the same scope must have
unique signatures. The scope of a function is the region of a program in which the function
is known and accessible. We'll say more about scope in Section 6.11.

In Fig. 6.3, if the function prototype in line 16 had been written

void maximum(int, int, int);

the compiler would report an error, because the void return type in the function prototype
would differ from the int return type in the function header. Similarly, such a prototype
would cause the statement

cout << maximum(6, 7,);

to generate a compilation error, because that statement depends on maximum to return a
value to be displayed.

Argument Coercion

An important feature of function prototypes is argument coercion—i.e., forcing argu-
ments to the appropriate types specified by the parameter declarations. For example, a pro-
gram can call a function with an integer argument, even though the function prototype
specifies a double argument—the function will still work correctly.

Argument Promotion Rules and Implicit Conversions’

Sometimes, argument values that do not correspond precisely to the parameter types in
the function prototype can be converted by the compiler to the proper type before the
function is called. These conversions occur as specified by C++’s promotion rules. The
promotion rules indicate the implicit conversions that the compiler can perform between
fundamental types. An int can be converted to a double. A double can also be converted
to an int but the fractional part of the double value is #runcated . Keep in mind that dou-
b1e variables can hold numbers of much greater magnitude than int variables, so the loss
of data may be considerable. Values may also be modified when converting large integer
types to small integer types (e.g., Tong to short), signed to unsigned or unsigned to signed.
Unsigned integers range from 0 to approximately twice the positive range of the corre-
sponding signed type.

The promotion rules apply to expressions containing values of two or more data types;
such expressions are also referred to as mixed-type expressions. The type of each value in
a mixed-type expression is promoted to the “highest” type in the expression (actually a
temporary version of each value is created and used for the expression—the original values
remain unchanged). Promotion also occurs when the type of a function argument does 7oz
match the parameter type specified in the function definition or prototype. Figure 6.6 lists
the arithmetic data types in order from “highest type” to “lowest type.”

1. Promotions and conversions are complex topics discussed in Section 4 and the beginning of Section
5 of the C++ standard. You can purchase a copy of the standard at bit.1y/CPTusPTusllStandard.

212 Chapter 6 Functions and an Introduction to Recursion

Data types

long double
double
float

unsigned Tong long int (synonymous with unsigned Tong Tong)

Tong long int (synonymous with Tong Tong)
unsigned long int (synonymous with unsigned Tong)
Tong int (synonymous with Tong)

unsigned int (synonymous with unsigned)

int

unsigned short int (synonymous with unsigned short)
short int (synonymous with short)

unsigned char
char and signed char
bool

Fig. 6.6 | Promotion hierarchy for arithmetic arithmetic data types.

Conversions Can Result in Incorrect Values

Converting values to lower fundamental types can result in incorrect values. Therefore, a
value can be converted to a lower fundamental type only by explicitly assigning the value
to a variable of lower type (some compilers will issue a warning in this case) or by using a
cast operator (see Section 4.9). Function argument values are converted to the parameter
types in a function prototype as if they were being assigned directly to variables of those
types. If a square function that uses an integer parameter is called with a floating-point
argument, the argument is converted to int (a lower type), and square could return an
incorrect value. For example, square(4.5) returns 16, not 20.25.

[= 1t’s a compilation error if the arguments in a function call do not match the number and
types of the parameters declared in the corresponding function prototype. It’s also an error
if the number of arguments in the call matches, but the arguments cannot be implicitly
converted to the expected types.

:——a ? Common Programming Error 6.4

e £

6.6 C++ Standard Library Headers

The C++ Standard Library is divided into many portions, each with its own header. The
headers contain the function prototypes for the related functions that form each portion
of the library. The headers also contain definitions of various class types and functions, as
well as constants needed by those functions. A header “instructs” the compiler on how to
interface with library and user-written components.

Figure 6.7 lists some common C++ Standard Library headers, most of which are dis-
cussed later in the book. The term “macro” that’s used several times in Fig. 6.7 is discussed
in detail in Appendix E, Preprocessor.

6.6 C++ Standard Library Headers 213

Standard Library

header Explanation

<iostream> Contains function prototypes for the C++ standard input and output
functions, introduced in Chapter 2, and is covered in more detail in
Chapter 13, Stream Input/Output: A Deeper Look.

<iomanip> Contains function prototypes for stream manipulators that format
streams of data. This header is first used in Section 4.9 and is discussed
in more detail in Chapter 13, Stream Input/Output: A Deeper Look.

<cmath> Contains function prototypes for math library functions (Section 6.3).

<cstdlib> Contains function prototypes for conversions of numbers to text, text
to numbers, memory allocation, random numbers and various other
utility functions. Portions of the header are covered in Section 6.7;
Chapter 11, Operator Overloading; Class string; Chapter 17, Excep-
tion Handling: A Deeper Look; Chapter 22, Bits, Characters, C Strings
and structs; and Appendix F, C Legacy Code Topics.

<ctime> Contains function prototypes and types for manipulating the time and
date. This header is used in Section 6.7.

<array>, These headers contain classes that implement the C++ Standard Library

<vectors>, <list>, containers. Containers store data during a program’s execution. The

<forward_list>, <vector> header is first introduced in Chapter 7, Class Templates array

<deque>, <queue>, and vector; Catching Exceptions. We discuss all these headers in

<stack>, <map>, Chapter 15, Standard Library Containers and Iterators.

<unordered_map>,
<unordered_set>,
<set>, <bitset>

<cctype> Contains function prototypes for functions that test characters for cer-
tain properties (such as whether the character is a digit or a punctua-
tion), and function prototypes for functions that can be used to convert
lowercase letters to uppercase letters and vice versa. These topics are dis-
cussed in Chapter 22, Bits, Characters, C Strings and structs.

<cstring> Contains function prototypes for C-style string-processing functions.
This header is used in Chapter 10, Operator Overloading; Class
string.

<typeinfo> Contains classes for runtime type identification (determining data types
at execution time). This header is discussed in Section 12.8.

<exception>, These headers contain classes that are used for exception handling (dis-

<stdexcept> cussed in Chapter 17, Exception Handling: A Deeper Look).

<memory> Contains classes and functions used by the C++ Standard Library to

allocate memory to the C++ Standard Library containers. This header is
used in Chapter 17, Exception Handling: A Deeper Look.

<fstream> Contains function prototypes for functions that perform input from
and output to files on disk (discussed in Chapter 14, File Processing).

<string> Contains the definition of class string from the C++ Standard Library
(discussed in Chapter 21, Class string and String Stream Processing).

Fig. 6.7 | C++ Standard Library headers. (Part | of 2.)

3

214 Chapter 6 Functions and an Introduction to Recursion

Standard Library

header Explanation

<sstream> Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory (discussed in
Chapter 21, Class string and String Stream Processing).

<functional> Contains classes and functions used by C++ Standard Library algo-
rithms. This header is used in Chapter 15.

<iterator> Contains classes for accessing data in the C++ Standard Library contain-
ers. This header is used in Chapter 15.

<algorithm> Contains functions for manipulating data in C++ Standard Library con-
tainers. This header is used in Chapter 15.

<cassert> Contains macros for adding diagnostics that aid program debugging.
This header is used in Appendix E, Preprocessor.

<cfloat> Contains the floating-point size limits of the system.

<climits> Contains the integral size limits of the system.

<cstdio> Contains function prototypes for the C-style standard input/output

library functions.

<locale> Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, etc.).

<limits> Contains classes for defining the numerical data type limits on each
computer platform.

<utility> Contains classes and functions that are used by many C++ Standard
Library headers.

Fig. 6.7 | C++ Standard Library headers. (Part 2 of 2.)

6.7 Case Study: Random Number Generation

[Note: The random-number generation techniques shown in this section and Section 6.8
are included for readers who are not yet using C++11 compilers. In Section 6.9, we’ll pres-
ent C++11’s improved random-number capabilities.]

We now take a brief and hopefully entertaining diversion into a popular programming ap-
plication, namely simulation and game playing. In this and the next section, we develop a
game-playing program that includes multiple functions.

The element of chance can be introduced into computer applications by using the
C++ Standard Library function rand. Consider the following statement:

i = randQ;

The function rand generates an unsigned integer between 0 and RAND_MAX (a symbolic
constant defined in the <cstd1ib> header). You can determine the value of RAND_MAX for
your system simply by displaying the constant. If rand truly produces integers at random,
every number between 0 and RAND_MAX has an equal chance (or probability) of being cho-
sen each time rand is called.

6.7 Case Study: Random Number Generation 215

The range of values produced directly by the function rand often is different than
what a specific application requires. For example, a program that simulates coin tossing
might require only 0 for “heads” and 1 for “tails.” A program that simulates rolling a six-
sided die would require random integers in the range 1 to 6. A program that randomly
predicts the next type of spaceship (out of four possibilities) that will fly across the horizon
in a video game might require random integers in the range 1 through 4.

Rolling a Six-Sided Die

To demonstrate rand, Fig. 6.8 simulates 20 rolls of a six-sided die and displays the value
of each roll. The function prototype for the rand function is in <cstd1ib>. To produce
integers in the range 0 to 5, we use the modulus operator (%) with rand as follows:

rand() %

This is called scaling. The number 6 is called the scaling factor. We then shift the range
of numbers produced by adding 1 to our previous result. Figure 6.8 confirms that the re-
sults are in the range 1 to 6. If you execute this program more than once, you'll see that it
produces the same “random” values each time. We'll show how to fix this in Figure 6.10.

1 // Fig. 6.8: fig06_08.cpp

2 // Shifted, scaled integers produced by 1 + rand() % 6.

3 #include <iostream>

4 #include <iomanip>

5 #include <cstdlib> // contains function prototype for rand

6 using namespace std;

7

8 1int main()

9 {

10 // Toop 20 times

11 for (unsigned 1int counter = 1; counter <= ; ++counter)
12 {

13 // pick random number from 1 to 6 and output it

14 cout << setw() << (+ rand() % 6);

15

16 // if counter is divisible by 5, start a new line of output
17 if (counter % 5 ==)

18 cout << endl;

19 } // end for

20 1} // end main

NOoO RO
WN R U

[e2 o)WV, M)
L S Ny}
R NWO

Fig. 6.8 | Shifted, scaled integers produced by 1 + rand() % 6.

Rolling a Six-Sided Die 6,000,000 Times

To show that the numbers produced by rand occur with approximately equal likelihood,
Fig. 6.9 simulates 6,000,000 rolls of a die. Each integer in the range 1 to 6 should appear
approximately 1,000,000 times. This is confirmed by the program’s output.

216 Chapter 6 Functions and an Introduction to Recursion

1 // Fig. 6.9: fig06_09.cpp

2 // Rolling a six-sided die 6,000,000 times.

3 #include <iostream>

4 #include <iomanip>

5 #include <cstdlib> // contains function prototype for rand
6 using namespace std;

7

8 1int main(Q)

9 {

10 unsigned int frequencyl = 0; // count of 1s rolled
11 unsigned int frequency2 = 0; // count of 2s rolled
12 unsigned int frequency3 = 0; // count of 3s rolled
13 unsigned int frequency4 = 0; // count of 4s rolled
14 unsigned int frequency5 = 0; // count of 5s rolled
15 unsigned int frequency6 = 0; // count of 6s rolled
16

17 // summarize results of 6,000,000 rolls of a die
18 for (unsigned int roll = 1; roll <= 6000000; ++roll)
19 {
20 unsigned int face = 1 + rand() % 6; // random number from 1 to 6
21
22 // determine roll value 1-6 and increment appropriate counter
23 switch (face)
24 {
25 case 1:
26 ++frequencyl; // increment the 1s counter
27 break;
28 case 2:
29 ++frequency2; // increment the 2s counter
30 break;
31 case 3:
32 ++frequency3; // increment the 3s counter
33 break;
34 case 4:
35 ++frequency4; // increment the 4s counter
36 break;
37 case 5:
38 ++frequency5; // increment the 5s counter
39 break;
40 case 6:
41 ++frequency6; // increment the 6s counter
42 break;
43 default: // invalid value
44 cout << "Program should never get here!";
45 } // end switch
46 } // end for
47
48 cout << "Face" << setw(13) << "Frequency"” << endl; // output headers
49 cout << " 1" << setw(13) << frequencyl
50 << "\n 2" << setw(13) << frequency2
51 << "\n 3" << setw(13) << frequency3
52 << "\n 4" << setw(13) << frequency4

Fig. 6.9 | Rolling a six-sided die 6,000,000 times. (Part | of 2.)

6.7 Case Study: Random Number Generation 217

53 << << setw() << frequency5
54 << << setw() << frequency6 << endl;
55 } // end main

Face Frequency
1 999702
2 1000823
3 999378
4 998898
5 1000777
6 1000422

Fig. 6.9 | Rolling a six-sided die 6,000,000 times. (Part 2 of 2.)

As the output shows, we can simulate the rolling of a six-sided die by scaling and
shifting the values produced by rand. The program should never get to the default case
(lines 43—44) in the switch structure, because the switch’s controlling expression (face)
always has values in the range 1-6; however, we provide the default case as a matter of
good practice. After we study arrays in Chapter 7, we show how to replace the entire
switch structure in Fig. 6.9 elegantly with a single-line statement.

<= Error-Prevention Tip 6.3
= | Provide a default case in a switch to catch errors even if you are absolutely, positively
certain that you have no bugs!

Randomizing the Random Number Generator
Executing the program of Fig. 6.8 again produces

NOoO RO
WN = U

(o)) IV, o))
L N
R NWwWO

The program prints exactly the same sequence of values shown in Fig. 6.8. How can these
be random numbers? When debugging a simulation program, this repeatability is essential for
proving that corrections to the program work properly.

Function rand actually generates pseudorandom numbers. Repeatedly calling rand
produces a sequence of numbers that appears to be random. However, the sequence repeats
itself each time the program executes. Once a program has been thoroughly debugged, it
can be conditioned to produce a different sequence of random numbers for each execu-
tion. This is called randomizing and is accomplished with the C++ Standard Library func-
tion srand. Function srand takes an unsigned integer argument and seeds the rand
function to produce a different sequence of random numbers for each execution. C++11
provides additional random number capabilities that can produce nondeterministic
random numbers—a set of random numbers that can’t be predicted. Such random
number generators are used in simulations and security scenarios where predictability is
undesirable. Section 6.9 introduces C++11 random-number generation capabilities.

3

218 Chapter 6 Functions and an Introduction to Recursion

Ensure that your program seeds the random number generator differently (and only
once) each time the program executes; otherwise, an attacker would easily be able to de-
termine the sequence of pseudorandom numbers thar would be produced.

?. Good Programming Practice 6. |

Seeding the Random Number Generator with srand

Figure 6.10 demonstrates function srand. The program uses the data type unsigned int.
An int is represented by at least two bytes, is typically four bytes on 32-bit systems and
can be as much as eight bytes on 64-bit systems. An int can have positive and negative
values. A variable of type unsigned int is also stored in at least two bytes of memory. A
four-byte unsigned int can have only nonnegative values in the range 0-4294967295.
Function srand takes an unsigned int value as an argument. The function prototype for
the srand function is in header <cstd1ib>.

1 // Fig. 6.10: fig06_10.cpp

2 // Randomizing the die-rolling program.

3 #include <iostream>

4 #include <iomanip>

5 #include <cstdlib> // contains prototypes for functions srand and rand
6 using namespace std;

7

8 1int main()

9 {

10 unsigned int seed = 0; // stores the seed entered by the user
11

12 cout << "Enter seed: ';

13 cin >> seed;

14 srand(seed); // seed random number generator

15

16 // Toop 10 times

17 for (unsigned 1int counter = 1; counter <= 10; ++counter)

18 {

19 // pick random number from 1 to 6 and output it
20 cout << setw(10) << (L + rand() % 6);
21
22 // if counter is divisible by 5, start a new line of output
23 if (counter % 5 == 0)
24 cout << endl;
25 } // end for

26 } // end main

Enter seed: 67

6 1 4 6 2

1 6 1 6 4
Enter seed: 432

4 6 3 1 6

3 1 5 4 2

Fig. 6.10 | Randomizing the die-rolling program. (Part | of 2.)

6.8 Case Study: Game of Chance; Introducing enum 219

Enter seed: 67
6
1

o R
'_l
o
S

Fig. 6.10 | Randomizing the die-rolling program. (Part 2 of 2.)

The program produces a different sequence of random numbers each time it executes,
provided that the user enters a different seed. We used the same seed in the first and third
sample outputs, so the same series of 10 numbers is displayed in each of those outputs.

Seeding the Random Number Generator with the Current Time
To randomize without having to enter a seed each time, we may use a statement like

srand(static_cast<unsigned int>(time()));

This causes the computer to read its clock to obtain the value for the seed. Function time
(with the argument 0 as written in the preceding statement) typically returns the current
time as the number of seconds since January 1, 1970, at midnight Greenwich Mean Time
(GMT). This value (which is of type time_t) is converted to an unsigned int and used as
the seed to the random number generator—the static_cast in the preceding statement
eliminates a compiler warning that’s issued if you pass a time_t value to a function that
expects an unsigned int. The function prototype for time is in <ctime>.

Scaling and Shifting Random Numbers

Previously, we simulated the rolling of a six-sided die with the statement
face = + rand() % 6;

which always assigns an integer (at random) to variable face in the range 1 <face <6.
The width of this range (i.c., the number of consecutive integers in the range) is 6 and the
starting number in the range is 1. Referring to the preceding statement, we see that the
width of the range is determined by the number used to scale rand with the modulus op-
erator (i.c., 6), and the starting number of the range is equal to the number (i.c., 1) thatis
added to the expression rand % 6. We can generalize this result as

number = shiftingValue + rand() % scalingFactor;

where shiftingValue is equal to the first number in the desired range of consecutive integers
and scalingFactor is equal to the widsh of the desired range of consecutive integers.

6.8 Case Study: Game of Chance; Introducing enum

One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys worldwide. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6
spots. After the dice have come to rest, the sum of the spots on the two upward faces is
calculated. If the sum is 7 or 11 on the first roll, the player wins. If the sum is 2, 3 or
12 on the first roll (called “craps”), the player loses (i.e., the “house” wins). If the sum
is4, 5, 6,8, 9 or 10 on the first roll, then that sum becomes the player’s ‘point.” To
win, you must continue rolling the dice until you “make your point.” The player loses

by rolling a 7 before making the point.

220 Chapter 6 Functions and an Introduction to Recursion

The program in Fig. 6.11 simulates the game. In the rules, notice that the player must
roll two dice on the first roll and on all subsequent rolls. We define function ro11Dice
(lines 62-74) to roll the dice and compute and print their sum. The function is defined
once, but called from lines 20 and 44. The function takes no arguments and returns the
sum of the two dice, so empty parentheses and the return type unsigned int are indicated
in the function prototype (line 8) and function header (line 62).

1 // Fig. 6.11: fig06_11.cpp

2 // Craps simulation.

3 #include <iostream>

4 #include <cstdlib> // contains prototypes for functions srand and rand
5 #include <ctime> // contains prototype for function time

6 using namespace std;

7

8 unsigned int rollDice(); // rolls dice, calculates and displays sum
9

10 1int mainQ)

11 {

12 // enumeration with constants that represent the game status

13 enum Status { CONTINUE, WON, LOST }; // all caps in constants

14

15 // randomize random number generator using current time

16 srand(static_cast<unsigned int>(time(0)));

17

18 unsigned 1int myPoint = 0; // point if no win or loss on first roll
19 Status gameStatus = CONTINUE; // can contain CONTINUE, WON or LOST
20 unsigned int sumOfDice = roll1Dice(); // first roll of the dice
21
22 // determine game status and point (if needed) based on first roll
23 switch (sumOfDice)
24 {
25 case 7: // win with 7 on first roll
26 case 11: // win with 11 on first roll
27 gameStatus = WON;
28 break;
29 case 2: // lose with 2 on first roll
30 case 3: // lose with 3 on first roll
31 case 12: // lose with 12 on first roll
32 gameStatus = LOST;
33 break;
34 default: // did not win or lose, so remember point
35 gameStatus = CONTINUE; // game is not over
36 myPoint = sumOfDice; // remember the point
37 cout << "Point is " << myPoint << endl;
38 break; // optional at end of switch
39 } // end switch
40
41 // while game 1is not complete
42 while (CONTINUE == gameStatus) // not WON or LOST
43 {

Fig. 6.11 | Craps simulation. (Part | of 3.)

6.8 Case Study: Game of Chance; Introducing enum

221

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

sumOfDice = rol1Dice(); // roll dice again

// determine game status
if (sumOfDice == myPoint) // win by making point
gameStatus = WON;
else
if (sumOfDice == 7) // lose by rolling 7 before point
gameStatus = LOST;
} // end while

// display won or lost message
if (WON == gameStatus)

cout << "Player wins" << endl;
else

cout << "Player loses'" << endl;

59 1} // end main

60
61 //

roll dice, calculate sum and display results

62 unsigned int rollDice()

63 {
64
65
66
67
68
69
70
71
72
73

// pick random die values
unsigned int diel = 1 + rand() % 6; // first die roll
unsigned 1int die2 = 1 + rand() % 6; // second die roll

unsigned int sum = diel + die2; // compute sum of die values

// display results of this roll
cout << "Player rolled " << diel << " + " << die2

<< " = << sum << endl;
return sum; // end function rollDice

74 1} // end function rollDice

Player rolled 2 + 5 = 7

Player wins

PTlayer rolled 6 + 6 = 12
PTlayer loses

Player rolled 1 + 3 = 4

Point 1is 4

PTlayer rolled 4 + 6 = 10
Player rolled 2 + 4 = 6

Player rolled 6 + 4 = 10
Player rolled 2 + 3 =5

Player rolled 2 + 4 = 6

Player rolled 1 + 1 = 2

Player rolled 4 + 4 = 8

Player rolled 4 + 3 = 7

Player Tloses

Fig. 6.11 | Craps simulation. (Part 2 of 3.)

222 Chapter 6 Functions and an Introduction to Recursion

Player rolled 3 + 3 = 6
Point is 6

Player rolled 5 + 3 = 8
PTlayer rolled 4 + 5 9
Player rolled 2 + 1 3
Player rolled 1 + 5 = 6

Player wins

Fig. 6.11 | Craps simulation. (Part 3 of 3.)

enum Type Status

The player may win or lose on the first roll or on any subsequent roll. The program uses
variable gameStatus to keep track of this. Variable gameStatus is declared to be of new
type Status. Line 13 declares a user-defined type called an enumeration that’s introduced
by the keyword enum and followed by a type name (in this case, Status) and a set of integer
constants represented by identifiers. The values of these enumeration constants start at 0,
unless specified otherwise, and increment by 1. In the preceding enumeration, the con-
stant CONTINUE has the value 0, WON has the value 1 and LOST has the value 2. The identi-
fiers in an enum must be unique, but separate enumeration constants can have the same
integer value.

Capitalize the first letter of an identifier used as a user-defined type name.

¥- Good Programming Practice 6.2

.

w72 Good Programming Practice 6.3

Use only uppercase letters in enumeration constant names. This makes these constants

U stand out in a program and reminds you that enumeration constants are not variables.

Variables of user-defined type Status can be assigned only one of the three values
declared in the enumeration. When the game is won, the program sets variable
gameStatus to WON (lines 27 and 48). When the game is lost, the program sets variable
gameStatus to LOST (lines 32 and 51). Otherwise, the program sets variable gameStatus
to CONTINUE (line 35) to indicate that the dice must be rolled again.

-

| Assigning the integer equivalent of an enumeration constant (rather than the enumera-
tion constant, isself) to a variable of the enumeration type is a compilation error.

;:{, Common Programming Error 6.5

-

Another popular enumeration is

enum Months { =1, 5 5 5 5 > , ,

. 5 : E

which creates user-defined type Months with enumeration constants representing the
months of the year. The first value in the preceding enumeration is explicitly set to 1, so
the remaining values increment from 1, resulting in the values 1 through 12. Any enumer-
ation constant can be assigned an integer value in the enumeration definition, and subse-
quent enumeration constants each have a value 1 higher than the preceding constant in
the list until the next explicit setting.

6.8 Case Study: Game of Chance; Introducing enum 223

<= Error-Prevention Tip 6.4
" | Use unique values for an enum’s constants to help prevent hard-to-find logic errors.

Winning or Losing on the First Roll

After the first roll, if the game is won or lost, the program skips the body of the whi e state-
ment (lines 42-52) because gameStatus is not equal to CONTINUE. The program proceeds
to the if...else statement in lines 55-58, which prints "PTayer wins" if gameStatus is
equal to WON and "PTlayer Toses" if gameStatus is equal to LOST.

Continuing to Roll
After the first roll, if the game is not over, the program saves the sum in myPoint (line 36).
Execution proceeds with the while statement, because gameStatus is equal to CONTINUE.
During each iteration of the while, the program calls ro11D7ice to produce a new sum. If
sum matches myPoint, the program sets gameStatus to WON (line 48), the whiTe-test fails,
the if...eTse statement prints "Player wins" and execution terminates. If sum is equal to
7, the program sets gameStatus to LOST (line 51), the whiTe-test fails, the if...eTse state-
ment prints "Player loses" and execution terminates.

The craps program uses two functions—main and ro11Dice—and the switch, while,
if...else, nested if...eTse and nested if statements. In the exercises, we further investi-
gate of the game of craps.

C++11—Scoped enums

In Fig. 6.11, we introduced enums. One problem with enums (also called unscoped enums) is
that multiple enums may contain the same identifiers. Using such enums in the same pro-
gram can lead to naming collisions and logic errors. To eliminate these problems, C++11
introduces so-called scoped enums, which are declared with the keywords enum class (or
the synonym enum struct). For example, we can define the Status enum of Fig. 6.11 as:

enum class Status { , , iE

To reference a scoped enum constant, you must qualify the constant with the scoped enum’s
type name (Status) and the scope-resolution operator (: :), as in Status: : CONTINUE. This
explicitly identifies CONTINUE as a constant in the scope of enum class Status. Thus, if an-
other scoped enum contains the same identifier for one of its constants, it’s always clear
which version of the constant is being used.

= Error-Prevention Tip 6.5

" | Use scoped enums to avoid potential naming conflicts and logic errors from unscoped enums
that contain the same identifiers.

C++11—Specifying the Type of an enum’s Constants

The constants in an enum are represented as integers. By default, an unscoped enum’s un-
derlying integral type depends on its constants’ values—the type is guaranteed to be large
enough to store the constant values specified. By default, a scoped enum’s underlying inte-
gral type is int. C++11 allows you to specify an enum’s underlying integral type by follow-
ing the enum’s type name with a colon (:) and the integral type. For example, we can
specify that the constants in the enum class Status should have type unsigned int, as in

enum class Status : unsigned int { 9 5 };

3

3

3

224 Chapter 6 Functions and an Introduction to Recursion

=, v Common Programming Error 6.6
' ‘g A compilation error occurs if an enum constant’s value is outside the range that can be rep-

. resented by the enum’s underlying type.

6.9 C++11 Random Numbers

According to CERT, function rand does not have “good statistical properties” and can be
predictable, which makes programs that use rand less secure (CERT guideline MSC30-
CPP). As we mentioned in Section 6.7, C++11 provides a new, more secure library of ran-
dom-number capabilities that can produce nondeterministic random numbers for simu-
lations and security scenarios where predictability is undesirable. These new capabilities
are located in the C++ Standard Library’s <random> header.

Random-number generation is a mathematically sophisticated topic for which math-
ematicians have developed many random-number generation algorithms with different
statistical properties. For flexibility based on how random numbers are used in programs,
C++11 provides many classes that represent various random-number generation engines
and distributions. An engine implements a random-number generation algorithm that pro-
duce pseudorandom numbers. A distribution controls the range of values produced by an
engine, the types of those values (e.g., int, doubTe, etc.) and the statistical properties of
the values. In this section, we'll use the default random-number generation engine—
default_random_engine—and a uniform_int_distribution, which evenly distributes
pseudorandom integers over a specified range of values. The default range is from 0 to the
maximum value of an int on your platform.

Rolling a Six-Sided Die

Figure 6.12 uses the default_random_engine and the uniform_int_distribution torolla
six-sided die. Line 14 creates a default_random_engine object named engine. Its construc-
tor argument seeds the random-number generation engine with the current time. If you don’t
pass a value to the constructor, the default seed will be used and the program will produce
the same sequence of numbers each time it executes. Line 15 creates randomInt—a
uniform_int_distribution object that produces unsigned int values (as specified by <un-
signed int>) in the range 1 to 6 (as specified by the constructor arguments). The expression
randomInt(engine) (line 21) returns one unsigned int value in the range 1 to 6.

// Fig. 6.12: fig06_12.cpp

// Using a C++11 random-number generation engine and distribution

// to roll a six-sided die.

#include <iostream>

#include <iomanip>

#include <random> // contains C++11 random number generation features
#include <ctime>

using namespace std;

int main(Q)

{

-0 Vo NONUNEWN=

Fig. 6.12 | Usinga C++11 random-number generation engine and distribution to roll a six-sided
die. (Part | of 2.)

6.10 Storage Classes and Storage Duration 225

12 // use the default random-number generation engine to

13 // produce uniformly distributed pseudorandom int values from 1 to 6
14 default_random_engine engine(static_cast<unsigned int>(time(0)));
15 uniform_int_distribution<unsigned int> randomInt(1,)

16

17 // loop 10 times

18 for (unsigned 1int counter = 1; counter <= ; ++counter)

19 {

20 // pick random number from 1 to 6 and output it

21 cout << setw(10) << randomInt(engine);

22

23 // if counter is divisible by 5, start a new line of output

24 if (counter % 5 ==)

25 cout << endl;

26 } // end for

27 } // end main

Fig. 6.12 | Usinga C++11 random-number generation engine and distribution to roll a six-sided
die. (Part 2 of 2.)

The notation <unsigned int> in line 15 indicates that uniform_int_distribution
is a class template. In this case, any integer type can be specified in the angle brackets (< and
>). In Chapter 18, we discuss how to create class templates and various other chapters
show how to use existing class templates from the C++ Standard Library. For now, you
should feel comfortable using class template uniform_int_distribution by mimicking
the syntax shown in the example.

6.10 Storage Classes and Storage Duration

The programs you’ve seen so far use identifiers for variable names and functions. The at-
tributes of variables include name, type, size and value. Each identifier in a program also
has other attributes, including storage duration, scope and linkage.

C++ provides five storage-class specifiers that determine a variable’s storage duration:
register, extern, mutable and static. This section discusses storage-class specifiers reg-
ister, extern and static. Storage-class specifier mutable is used exclusively with classes
and thread_local is used in multithreaded applications—these are discussed in
Chapters 23 and 24, respectively.

Storage Duration

An identifier’s storage duration determines the period during which that identifier exists in
memory. Some exist briefly, some are repeatedly created and destroyed and others exist for
a program’s entire execution. First we discuss the storage durations static and automatic.

Scope

An identifier’s scope is where the identifier can be referenced in a program. Some identifiers
can be referenced throughout a program; others can be referenced from only limited por-
tions of a program. Section 6.11 discusses the scope of identifiers.

226 Chapter 6 Functions and an Introduction to Recursion

Linkage

An identifier’s /inkage determines whether it’s known only in the source file where its de-
clared or across multiple files that are compiled, then linked together. An identifier’s storage-
class specifier helps determine its storage duration and linkage.

Storage Duration

The storage-class specifiers can be split into four storage durations: automatic, static, dy-
namic and thread. Automatic and static storage duration are discussed below. In
Chapter 10, you'll learn that you can request additional memory in your program during
the program’s execution—so-called dynamic memory allocation. Variables allocated dy-
namically have dynamic storage duration. Chapter 24 discusses thread storage duration.

Local Variables and Automatic Storage Duration
Variables with automatic storage duration include:

e Jocal variables declared in functions
e function parameters
e local variables or function parameters declared with register

Such variables are created when program execution enters the block in which they’re de-
fined, they exist while the block is active and they’re destroyed when the program exits the
block. An automatic variable exists only in the nearest enclosing pair of curly braces within
the body of the function in which the definition appears, or for the entire function body
in the case of a function parameter. Local variables are of automatic storage duration by
default. For the remainder of the text, we refer to variables of automatic storage duration
simply as automatic variables.

s Performance Tip 6.1
ﬁ" Automatic storage is a means of conserving memory, because automatic storage duration
o variables exist in memory only when the block in which they're defined is executing.

Automatic storage is an example of the principle of least privilege. In the context of an

I8 application, the principle states that code should be granted only the amount of privilege
and access that it needs to accomplish its designated task, but no more. Why should we
have variables stored in memory and accessible when theyre not needed?

¥ S_W Software Engineering Observation 6.6
-

Declare variables as close to where they’re first used as possible.

-?z Good Programming Practice 6.4

A

Register Variables
Data in the machine-language version of a program is normally loaded into registers for
calculations and other processing.

The compiler might ignore register declarations. For example, there might not be a
sufficient number of registers available. The following definition suggests that the unsigned
int variable counter be placed in one of the computer’s registers; regardless of whether
the compiler does this, counter is initialized to 1:

6.10 Storage Classes and Storage Duration 227

register unsigned int counter = 1;

The register keyword can be used on/y with local variables and function parameters.

. Performance Tip 6.2

: -;-?r‘ The storage-class specifier register can be placed before an automatic variable declaration

- to suggest that the compiler maintain the variable in one of the computer’s high-speed hard-
ware registers rather than in memory. If intensely used variables such as counters or totals are
kept in hardware registers, the overhead of repeatedly loading the variables from memory
into the registers and storing the results back into memory is eliminated.

1 Performance Tip 6.3
ﬁ", Often, register is unnecessary. Today’s optimizing compilers can recognize frequently
' used variables and may place them in registers without needing a register declaration.

Static Storage Duration

Keywords extern and static declare identifiers for variables with static storage duration
and for functions. Variables with static storage duration exist in memory from the point
at which the program begins execution and until the program terminates. Such a variable
is initialized once when its declaration is encountered. For functions, the name of the func-
tion exists when the program begins execution. Even though function names and static-
storage-duration variables exist from the start of program execution, their identifiers can-
not necessarily be used throughout the program. Storage duration and scope (where a
name can be used) are separate issues, as we'll see in Section 6.11.

Identifiers with Static Storage Duration

There are two types of identifiers with static storage duration—external identifiers (such as
global variables) and local variables declared with the storage-class specifier static. Global
variables are created by placing variable declarations ousside any class or function defini-
tion. Global variables retain their values throughout a program’s execution. Global vari-
ables and global functions can be referenced by any function that follows their declarations
or definitions in the source file.

44 Software Engineering Observation 6.7

* Declaring a variable as global rather than local allows unintended side effects 70 occur

X8 when a function that does not need access to the variable accidentally or maliciously
modifies it. This is another example of the principle of least privilege—in general, excepr
for truly global resources such as cin and cout, the use of global variables should be
avoided unless there are unique performance requirements.

Variables used only in a particular function should be declared as local variables in that
25 function rather than as global variables.

¥ S'w Software Engineering Observation 6.8
-

static Local Variables

Local variables declared static are still known only in the function in which they’re de-
clared, but, unlike automatic variables, static local variables retain their values when the
Jfunction returns to its caller. The next time the function is called, the static local variables

228 Chapter 6 Functions and an Introduction to Recursion

contain the values they had when the function last completed execution. The following
statement declares local variable count to be static and to be initialized to 1:

static unsigned int count = 1;

All numeric variables of static storage duration are initialized to zero by default, but ic’s nev-
ertheless a good practice to explicitly initialize all variables.

Storage-class specifiers extern and static have special meaning when they’re applied
explicitly to external identifiers such as global variables and global function names. In
Appendix F, C Legacy Code Topics, we discuss using extern and static with external
identifiers and multiple-source-file programs.

6.11 Scope Rules

The portion of the program where an identifier can be used is known as its scope. For ex-
ample, when we declare a local variable in a block, it can be referenced only in that block
and in blocks nested within that block. This section discusses block scope, function scope,
global namespace scope and function-prototype scope. Later we'll see two other scopes—
class scope (Chapter 9) and namespace scope (Chapter 23).

Block Scope

Identifiers declared 7nside a block have block scope, which begins at the identifier’s declara-
tion and ends at the terminating right brace (}) of the block in which the identifier is de-
clared. Local variables have block scope, as do function parameters. Any block can contain
variable declarations. When blocks are nested and an identifier in an outer block has the
same name as an identifier in an inner block, the identifier in the outer block is “hidden”
until the inner block terminates. The inner block “sees” its own local identifier’s value and
not that of the enclosing block’s identically named identifier. Local variables declared
static still have block scope, even though they exist from the time the program begins
execution. Storage duration does 7oz affect an identifier’s scope.

\ Accidentally using the same name for an identifier in an inner block that'’s used for an
identifier in an outer block, when in fact you want the identifier in the outer block to be
active for the duration of the inner block, is typically a logic error.

;:{, Common Programming Error 6.7

-

< Error-Prevention Tip 6.6
o Avoid variable names that hide names in outer scopes.

[~

Function Scope

Labels (identifiers followed by a colon such as start: or a case label in a switch state-
ment) are the only identifiers with finction scope. Labels can be used anywhere in the func-
tion in which they appear, but cannot be referenced outside the function body.

Global Namespace Scope
An identifier declared ousside any function or class has global namespace scope. Such an
identifier is “known” in all functions from the point at which it’s declared until the end of

6.11 Scope Rules 229

the file. Global variables, function definitions and function prototypes placed outside a
function all have global namespace scope.

Function-Prototype Scope

The only identifiers with function-prototype scope are those used in the parameter list of a
function prototype. As mentioned previously, function prototypes do 7oz require names
in the parameter list—only types are required. Names appearing in the parameter list of a
function prototype are ignored by the compiler. Identifiers used in a function prototype
can be reused elsewhere in the program without ambiguity.

Scope Demonstration

The program of Fig. 6.13 demonstrates scoping issues with global variables, automatic lo-
cal variables and static local variables. Line 10 declares and initializes global variable x to
1. This global variable is hidden in any block (or function) that declares a variable named
x. In main, line 14 displays the value of global variable x. Line 16 declares a local variable
x and initializes it to 5. Line 18 outputs this variable to show that the global x is hidden
in main. Next, lines 20-24 define a new block in main in which another local variable x is
initialized to 7 (line 21). Line 23 outputs this variable to show that it sides x in the outer
block of main as well as the global x. When the block exits, the variable x with value 7 is
destroyed automatically. Next, line 26 outputs the local variable x in the outer block of
main to show that it’s no longer hidden.

1 // Fig. 6.13: fig06_13.cpp

2 // Scoping example.

3 #include <iostream>

4 using namespace std;

5

6 void useLocal(); // function prototype

7 void useStaticLocal(); // function prototype
8 void useGlobal(); // function prototype

9

10 1int x = 1; // global variable

11
12 1int main(Q)

13 {

14 cout << << X << endl;

15

16 int x = 5; // local variable to main

17

18 cout << << X << endTl;
19

20 { // start new scope

21 int x = 7; // hides both x in outer scope and global x
22

23 cout << << X << endl;
24 } // end new scope

Fig. 6.13 | Scoping example. (Part | of 3.)

230 Chapter 6 Functions and an Introduction to Recursion

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

cout << "local x in main's outer scope is << X << endT;
uselLocal(); // uselocal has Tocal x

useStaticlLocal(); // useStaticlLocal has static Tocal x
useGlobal(); // useGlobal uses global x

uselLocal(); // uselocal reinitializes its Tocal x
useStaticlLocal(); // static local x retains its prior value
useGlobal(); // global x also retains its prior value

cout << "\nlocal x in main is " << x << endl;
} // end main

// uselocal reinitializes local variable x during each call
void uselLocal()

{
int x = 25; // initialized each time uselocal is called
cout << "\nlocal x 1is "
++X;
cout << "local x 1is << X <<
} // end function uselocal

<< X << " on entering uselocal"” << endl;

on exiting uselocal"” << endl;

// useStaticlLocal initializes static local variable x only the
// first time the function is called; value of x is saved

// between calls to this function

void useStaticLocal()

{
static int x = 50; // initialized first time useStaticlLocal 1is called
cout << "\nlocal static x is " << x << " on entering useStaticlLocal"
<< endl;
++X;
cout << "local static x is " << x << " on exiting useStaticLocal"
<< endl;

} // end function useStaticlLocal

// useGlobal modifies global variable x during each call
void useGlobal()
{
cout << "\nglobal x is " << x << " on entering useGlobal"” << endl;
X *= 10;
cout << "global x 1is << X <<
} // end function useGlobal

on exiting useGlobal" << endl;

global x in main is 1

Jocal x in main's outer scope is 5
local x in main's inner scope 1is 7
Tocal x in main's outer scope is 5

Tocal x is 25 on entering uselocal
Jocal x is 26 on exiting uselocal

Fig. 6.13 | Scoping example. (Part 2 of 3.)

6.12 Function Call Stack and Activation Records 231

Tocal static x is 50 on entering useStaticlLocal
Tocal static x is 51 on exiting useStaticlLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

Tocal x is 25 on entering uselocal
Tocal x is 26 on exiting uselocal

Jocal static x is 51 on entering useStaticlocal
Tocal static x is 52 on exiting useStaticlLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 6.13 | Scoping example. (Part 3 of 3.)

To demonstrate other scopes, the program defines three functions, each of which
takes no arguments and returns nothing. Function uselLocal (lines 39—46) declares auto-
matic variable x (line 41) and initializes it to 25. When the program calls useLocal, the
function prints the variable, increments it and prints it again before the function returns
program control to its caller. Each time the program calls this function, the function
recreates automatic variable x and reinitializes it to 25.

Function useStaticlLocal (lines 51—60) declares static variable x and initializes it
to 50. Local variables declared as static retain their values even when they’re out of scope
(i.e., the function in which they’re declared is not executing). When the program calls
useStaticLocal, the function prints x, increments it and prints it again before the func-
tion returns program control to its caller. In the next call to this function, static local
variable x contains the value 51. The initialization in line 53 occurs only once—the first
time useStaticLocal is called.

Function useGlobal (lines 63—68) does not declare any variables. Therefore, when it
refers to variable x, the global x (line 10, preceding main) is used. When the program calls
useGlobal, the function prints the global variable x, multiplies it by 10 and prints it again
before the function returns program control to its caller. The next time the program calls
useGlobal, the global variable has its modified value, 10. After executing functions use-
Local, useStaticLocal and useGlobal twice each, the program prints the local variable
x in main again to show that none of the function calls modified the value of x in main,
because the functions all referred to variables in other scopes.

6.12 Function Call Stack and Activation Records

To understand how C++ performs function calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a
pile of dishes. When a dish is placed on the pile, i’s normally placed at the top—referred
to as pushing the dish onto the stack. Similarly, when a dish is removed from the pile, it’s
normally removed from the top—referred to as popping the dish off the stack. Stacks are
known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on the
stack is the first item popped (removed) from the stack.

232 Chapter 6 Functions and an Introduction to Recursion

Function-Call Stack

One of the most important mechanisms for computer science students to understand is
the function call stack (sometimes referred to as the program execution stack). This data
structure—working “behind the scenes”™—supports the function call/return mechanism.
It also supports the creation, maintenance and destruction of each called function’s auto-
matic variables. As we'll see in Figs. 6.15-6.17, last-in, first-out (LIFO) behavior is exactly
what a function needs in order to return to the function that called it.

Stack Frames

As each function is called, it may, in turn, call other functions, which may, in turn, call
other functions—all before any of the functions return. Each function eventually must re-
turn control to the function that called it. So, somehow, we must keep track of the return
addresses that each function needs to return control to the function that called it. The func-
tion call stack is the perfect data structure for handling this information. Each time a func-
tion calls another function, an entry is pushed onto the stack. This entry, called a stack
frame or an activation record, contains the return address that the called function needs in
order to return to the calling function. It also contains some additional information we’ll
soon discuss. If the called function returns, instead of calling another function before re-
turning, the stack frame for the function call is popped, and control transfers to the return
address in the popped stack frame.

The beauty of the call stack is that each called function always finds the information
it needs to return to its caller at the z0p of the call stack. And, if a function makes a call to
another function, a stack frame for the new function call is simply pushed onto the call
stack. Thus, the return address required by the newly called function to return to its caller
is now located at the 70p of the stack.

Automatic Variables and Stack Frames

The stack frames have another important responsibility. Most functions have automatic
variables—parameters and any local variables the function declares. Automatic variables
need to exist while a function is executing. They need to remain active if the function
makes calls to other functions. But when a called function returns to its caller, the called
function’s automatic variables need to “go away.” The called function’s stack frame is a
perfect place to reserve the memory for the called function’s automatic variables. That
stack frame exists as long as the called function is active. When that function returns—and
no longer needs its local automatic variables—its stack frame is popped from the stack, and
those local automatic variables are no longer known to the program.

Stack Overflow

Of course, the amount of memory in a computer is finite, so only a certain amount of
memory can be used to store activation records on the function call stack. If more function
calls occur than can have their activation records stored on the function call stack, a fatal
error known as stack overflow occurs.

Function Call Stack in Action

Now let’s consider how the call stack supports the operation of a square function called
by main (lines 9-14 of Fig. 6.14). First the operating system calls main—this pushes an
activation record onto the stack (shown in Fig. 6.15). The activation record tells main how

6.12 Function Call Stack and Activation Records 233

to return to the operating system (i.e., transfer to return address R1) and contains the space
for main’s automatic variable (i.e., a, which is initialized to 10).

1 // Fig. 6.14: fig06_14.cpp

2 // square function used to demonstrate the function

3 // call stack and activation records.

4 #include <iostream>

5 using namespace std;

6

7 1int square(int); // prototype for function square

8

9 int main()

10 {

11 int a = 10; // value to square (local automatic variable in main)
12

13 cout << a << " squared: " << square(a) << endl; // display a squared
14 } // end main

15

16 // returns the square of an integer

17 int square(int x) // x is a local variable

18 {

19 return x * x; // calculate square and return result
20 } // end function square

10 squared: 100

Fig. 6.14 | square function used to demonstrate the function call stack and activation records.

Step |: Operating system invokes main to execute application

— int main(Q)

{
int a = 10;
- cout << a <<

- 3

Operating system

squared:
<< square(a) << endl;

Return location R1

Function call stack after Step |

Top of stack

Return location: R1

Activation record Automatic variables:

for function main
: - Key

Lines that represent the operating
system executing instructions

Fig. 6.15 | Function call stack after the operating system invokes main to execute the program.

234 Chapter 6 Functions and an Introduction to Recursion

Function main—before returning to the operating system—now calls function
square in line 13 of Fig. 6.14. This causes a stack frame for square (lines 17-20) to be
pushed onto the function call stack (Fig. 6.16). This stack frame contains the return
address that square needs to return to main (i.e., R2) and the memory for square’s auto-
matic variable (i.e., x).

Step 2: main invokes function square to perform calculation

int main()
— int square(int x)
{
int a = 10; {
cout << a << " squared: " return x * x;
Return location R2 << square(a) << endl; 3
}

Function call stack after Step 2

Top of stack
Return location: R2

Activation record for Automatic variables:

function square -
X

Return location: R1

Activation record Automatic variables:

for function main .
a

Fig. 6.16 | Function call stack after main invokes square to perform the calculation.

After square calculates the square of its argument, it needs to return to main—and no
longer needs the memory for its automatic variable x. So square’s stack frame is popped
from the stack—giving square the return location in main (i.e., R2) and losing square’s
automatic variable. Figure 6.17 shows the function call stack affer square’s activation
record has been popped.

Function main now displays the result of calling square (Fig. 6.14, line 13). Reaching
the closing right brace of main causes its stack frame to be popped from the stack, givesmain
the address it needs to return to the operating system (i.e., R1 in Fig. 6.15)—at this point,
main’s automatic variable (i.e., a) no longer exists.

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. Data structures have many important applica-
tions in computer science. We discuss stacks, queues, lists, trees and other data structures
in Chapter 15, Standard Library Containers and Iterators, and Chapter 19, Custom Tem-
platized Data Structures.

6.13 Functions with Empty Parameter Lists 235

Step 3: square returns its result to main

int mainQ
int square(int x)
{
int a = 10; {
cout << a << " squared: " return x * x;
Return location R2 << square(a) << endl; X
} 4

Function call stack after Step 3

Top of stack

Return location: R1

Activation record Automatic variables:

for function main -
a

Fig. 6.17 | Function call stack after function square returns to main.

6.13 Functions with Empty Parameter Lists

In C++, an empty parameter list is specified by writing either void or nothing at all in pa-
rentheses. The prototype

void print(Q);

specifies that function print does nor take arguments and does 7ot return a value.
Figure 6.18 shows both ways to declare and use functions with empty parameter lists.

VO ~NONUND WN -

10
11
12
13
14

// Fig. 6.18: fig06_18.cpp

// Functions that take no arguments.
#include <iostream>

using namespace std;

void functionl(); // function that takes no arguments
void function2(void); // function that takes no arguments

int main(Q)
{
functionl(); // call functionl with no arguments
function2(); // call function2 with no arguments
} // end main

Fig. 6.18 | Functions that take no arguments. (Part | of 2.)

236 Chapter 6 Functions and an Introduction to Recursion

15
16
17
18
19
20
21
22
23
24
25
26
27

// functionl uses an empty parameter list to specify that
// the function receives no arguments
void functionl()
{
cout << << endl;
} // end functionl

// function2 uses a void parameter 1list to specify that
// the function receives no arguments
void function2(void)
{

cout << << endl;
} // end function2

functionl takes no arguments
function2 also takes no arguments

Fig. 6.18 | Functions that take no arguments. (Part 2 of 2.)

6.14 Inline Functions

Implementing a program as a set of functions is good from a software engineering stand-
point, but function calls involve execution-time overhead. C++ provides inline functions
to help reduce function call overhead. Placing the qualifier inline before a function’s re-
turn type in the function definition advises the compiler to generate a copy of the func-
tion’s body code in every place where the function is called (when appropriate) to avoid a
function call. This often makes the program /larger. The compiler can ignore the inline
qualifier and generally does so for all but the smallest functions. Reusable in1ine functions
are typically placed in headers, so that their definitions can be included in each source file
that uses them.

-t-s-* Software Engineering Observation 6.9
£

= If you change the definition of an inline function, you should recompile all of that
S50 function’s clients.

w8 Performance Tip 6.4

1 ﬁ‘_ Compilers can inline code for which you have not explicitly used the inline keyword.
5 Today’s optimizing compilers are so sophisticated that it’s best to leave inlining decisions
to the compiler.

Figure 6.19 uses inline function cube (lines 9—12) to calculate the volume of a cube.

Keyword const in function cube’s parameter list (line 9) tells the compiler that the func-
tion does 7ot modify variable side. This ensures that side’s value is 7ot changed by the
function during the calculation. (Keyword const is discussed in detail in Chapters 7-9.)

. The const qualifier should be used to enforce the principle of least privilege. Using the
58 principle of least privilege to properly design software can greatly reduce debugging time
and improper side effects and can make a program easier to modify and maintain.

4w Software Engineering Observation 6.10
-

6.15 References and Reference Parameters 237

1 // Fig. 6.19: fig06_19.cpp

2 // inline function that calculates the volume of a cube.

3 #include <iostream>

4 using namespace std;

5

6 // Definition of inline function cube. Definition of function appears
7 // before function is called, so a function prototype is not required.
8 // First Tine of function definition acts as the prototype.
9 1inline double cube(const double side)

10 {

11 return side * side * side; // calculate cube

12 } // end function cube

13

14 int mainQ)

15 {

16 double sideValue; // stores value entered by user

17 cout << "Enter the side length of your cube: ";

18 cin >> sideValue; // read value from user

19
20 // calculate cube of sideValue and display result
21 cout << "Volume of cube with side "
22 << sideValue << " 1is " << cube(sideValue) << endl;

23 } // end main

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 is 42.875

Fig. 6.19 | inline function that calculates the volume of a cube.

6.15 References and Reference Parameters

Two ways to pass arguments to functions in many programming languages are pass-by-
value and pass-by-reference. When an argument is passed by value, a copy of the argu-
ment’s value is made and passed (on the function call stack) to the called function.
Changes to the copy do not affect the original variable’s value in the caller. This prevents
the accidental side effects that so greatly hinder the development of correct and reliable soft-
ware systems. So far, each argument in the book has been passed by value.

. Performance Tip 6.5
e ﬂr’- One disadvantage of pass-by-value is that, if a large data item is being passed, copying that

= data can take a considerable amount of execution time and memory space.

Je

Reference Parameters

This section introduces reference parameters—the first of the two means C++ provides for
performing pass-by-reference. With pass-by-reference, the caller gives the called function
the ability to access the callers data directly, and to modify that data.

w1 Performance Tip 6.6

- Pass-by-reference is good for performance reasons, because it can eliminate the pass-by-val-
ue overhead of copying large amounts of data.

—

=

238 Chapter 6 Functions and an Introduction to Recursion

Pass-by-reference can weaken security; the called function can corrupt the caller’s data.

. -ih Software Engineering Observation 6.1 |

Later, we'll show how to achieve the performance advantage of pass-by-reference
while simultaneously achieving the software engineering advantage of protecting the caller’s
data from corruption.

A reference parameter is an alias for its corresponding argument in a function call.
To indicate that a function parameter is passed by reference, simply follow the parameter’s
type in the function prototype by an ampersand (&); use the same convention when listing
the parameter’s type in the function header. For example, the following declaration in a
function header

int &count

when read from right to left is pronounced “count is a reference to an int.” In the function
call, simply mention the variable by name to pass it by reference. Then, mentioning the
variable by its parameter name in the body of the called function actually refers to the orig-
inal variable in the calling function, and the original variable can be modified directly by
the called function. As always, the function prototype and header must agree.

Passing Arguments by Value and by Reference

Figure 6.20 compares pass-by-value and pass-by-reference with reference parameters. The
“styles” of the arguments in the calls to function squareByValue and function squareBy-
Reference are identical—both variables are simply mentioned by name in the function
calls. Without checking the function prototypes or function definitions, it isn't possible to tell
Jfrom the calls alone whether either function can modify its arguments. Because function pro-
totypes are mandatory, the compiler has no trouble resolving the ambiguity.

Because reference parameters are mentioned only by name in the body of the called func-
tion, you might inadvertently treat reference parameters as pass-by-value parameters. This
can cause unexpected side effects if the original variables are changed by the function.

e I ? Common Programming Error 6.8
=

1 // Fig. 6.20: fig06_20.cpp

2 // Passing arguments by value and by reference.

3 #include <iostream>

4 using namespace std;

5

6 1int squareByValue(int); // function prototype (value pass)
7 void squareByReference(int &); // function prototype (reference pass)
8

9 dint main()

10 {

11 int x = 2; // value to square using squareByValue

12 int z = 4; // value to square using squareByReference

13

Fig. 6.20 | Passing arguments by value and by reference. (Part | of 2.)

6.15 References and Reference Parameters 239

14 // demonstrate squareByValue

15 cout << << X << ;

16 cout <<

17 << squareByValue(x) << endl;

18 cout << << X << << endl;
19

20 // demonstrate squareByReference

21 cout << << Z << << endl;
22 squareByReference(z);

23 cout << << zZ << << endl;
24 1} // end main

25

26 // squareByValue multiplies number by itself, stores the
27 // result in number and returns the new value of number
28 1int squareByValue(int number)

29 {

30 return number *= number; // caller's argument not modified
31 1} // end function squareByValue

32

33 // squareByReference multiplies numberRef by itself and stores the result
34 // in the variable to which numberRef refers in function main

35 void squareByReference(int &numberRef)

36 {

37 numberRef *= numberRef; // caller's argument modified

38 1} // end function squareByReference

= 2 before squareByValue
Value returned by squareByValue: 4

x = 2 after squareByValue
z = 4 before squareByReference
z = 16 after squareByReference

Fig. 6.20 | Passing arguments by value and by reference. (Part 2 of 2.)

Chapter 8 discusses pointers; pointers enable an alternate form of pass-by-reference in
which the style of the call clearly indicates pass-by-reference (and the potential for modi-
fying the caller’s arguments).

_Performance Tip 6.7
1 L For passing large objects, use a constant reference parameter to simulate the appearance

and security of pass-by-value and avoid the overhead of passing a copy of the large object.

To specify that a reference should not be allowed to modify the argument, place the
const qualifier before the type specifier in the parameter declaration. Note the placement
of & in function squareByReference’s parameter list (line 35, Fig. 6.20). Some C++ pro-
grammers prefer to write the equivalent form int& numberRef.

References as Aliases within a Function
References can also be used as aliases for other variables within a function (although they
typically are used with functions as shown in Fig. 6.20). For example, the code

240 Chapter 6 Functions and an Introduction to Recursion

int count = 1; // declare integer variable count

int &cRef = count; // create cRef as an alias for count

++cRef; // increment count (using its alias cRef)
increments variable count by using its alias cRef. Reference variables ust be initialized in
their declarations and cannot be reassigned as aliases to other variables. Once a reference
is declared as an alias for another variable, all operations supposedly performed on the a/ias
(i.e., the reference) are actually performed on the original variable. The alias is simply an-
other name for the original variable. Unless it’s a reference to a constant, a reference argu-
ment must be an fvalue (e.g., a variable name), not a constant or rvalue expression (e.g.,
the result of a calculation).

Returning a Reference from a Function

Functions can return references, but this can be dangerous. When returning a reference to
a variable declared in the called function, unless that variable is declared static, the ref-
erence refers to an automatic variable that’s discarded when the function terminates. An
attempt to access such a variable yields undefined behavior. References to undefined vari-
ables are called dangling references.

7 Common Programming Error 6.9

"Lz Returning a reference to an automatic variable in a called function is a logic error. Com-

SN pilers typically issue a warning when this occurs. For industrial-strength code, always
eliminate all compilation warnings before producing executable code.

6.16 Default Arguments

I’s common for a program to invoke a function repeatedly with the same argument value
for a particular parameter. In such cases, you can specify that such a parameter has a de-
fault argument, i.e., a default value to be passed to that parameter. When a program omits
an argument for a parameter with a default argument in a function call, the compiler re-
writes the function call and inserts the default value of that argument.

Default arguments must be the rightmost (trailing) arguments in a function’s
parameter list. When calling a function with two or more default arguments, if an omitted
argument is no¢ the rightmost argument in the argument list, then all arguments to the
right of that argument also musz be omitted. Default arguments must be specified with the
firstoccurrence of the function name—typically, in the function prototype. If the function
prototype is omitted because the function definition also serves as the prototype, then the
default arguments should be specified in the function header. Default values can be any
expression, including constants, global variables or function calls. Default arguments also
can be used with inline functions.

Figure 6.21 demonstrates using default arguments to calculate a box’s volume. The
function prototype for boxvolume (line 7) specifies that all three parameters have been
given default values of 1. We provided variable names in the function prototype for read-
ability. As always, variable names are 7o¢ required in function prototypes.

The first call to boxVolume (line 13) specifies no arguments, thus using all three
default values of 1. The second call (line 17) passes only a Tength argument, thus using
default values of 1 for the width and height arguments. The third call (line 21) passes
arguments for only Tength and width, thus using a default value of 1 for the height argu-

6.16 Default Arguments 241

1 // Fig. 6.21: fig06_21.cpp
2 // Using default arguments.
3 #include <iostream>
4 using namespace std;
5
6 // function prototype that specifies default arguments
7 unsigned int boxVolume(unsigned int Tength = 1, unsigned int width = 1,
8 unsigned int height = 1);
9
10 1int mainQ)
11 {
12 // no arguments--use default values for all dimensions
13 cout << "The default box volume is: " << boxVolume();
14
15 // specify length; default width and height
16 cout << "\n\nThe volume of a box with Tength 10,\n"
17 << "width 1 and height 1 is: " << boxVolume(10);
18
19 // specify length and width; default height
20 cout << "\n\nThe volume of a box with Tength 10,\n"
21 << "width 5 and height 1 is: " << boxVolume(10, 5);
22
23 // specify all arguments
24 cout << "\n\nThe volume of a box with Tength 10,\n"
25 << "width 5 and height 2 1is: " << boxVolume(10, 5, 2)
26 << endl;
27 } // end main
28
29 // function boxVolume calculates the volume of a box
30 unsigned int boxVolume(unsigned int length, unsigned int width,
31 unsigned int height)
32 {
33 return length * width * height;
34 1} // end function boxVolume

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with Tength 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

Fig. 6.21 | Using default arguments.

ment. The last call (line 25) passes arguments for Tength, width and height, thus using
no default values. Any arguments passed to the function explicitly are assigned to the func-
tion’s parameters from left to right. Therefore, when boxVolume receives one argument,
the function assigns the value of that argument to its Tength parameter (i.c., the leftmost
parameter in the parameter list). When boxVolume receives two arguments, the function

242 Chapter 6 Functions and an Introduction to Recursion

assigns the values of those arguments to its Tength and width parameters in that order.
Finally, when boxVolume receives all three arguments, the function assigns the values of
those arguments to its Tength, width and hei ght parameters, respectively.

w72 Good Programming Practice 6.5
? Using default arguments can simplify writing function calls. However, some programmers
= feel that explicitly specifying all arguments is clearer.

6.17 Unary Scope Resolution Operator

I¢’s possible to declare local and global variables of the same name. C++ provides the unary
scope resolution operator (: :) to access a global variable when a local variable of the same
name is in scope. The unary scope resolution operator cannot be used to access a local vari-
able of the same name in an outer block. A global variable can be accessed directly without
the unary scope resolution operator if the name of the global variable is not the same as
that of a local variable in scope.

Figure 6.22 shows the unary scope resolution operator with local and global variables
of the same name (lines 6 and 10). T'o emphasize that the local and global versions of vari-
able number are distinct, the program declares one variable int and the other double.

1 // Fig. 6.22: fig06_22.cpp

2 // Unary scope resolution operator.

3 #include <iostream>

4 using namespace std;

5

6 1int number = 7; // global variable named number

7

8 int mainQ

9 {

10 double number = ; // local variable named number
11

12 // display values of Tocal and global variables

13 cout << << number
14 << << ::number << endl;

I5 } // end main

Local double value of number 10.5

Global int value of number = 7

Fig. 6.22 | Unary scope resolution operator.

| Always using the unary scope resolution operator (: :) to refer to global variables makes it
clear that you re intending to access a global variable rather than a nonglobal variable.

?.. Good Programming Practice 6.6

; Always using the unary scope resolution operator (: :) to refer to global variables makes
28 programs easier to modify by reducing the risk of name collisions with nonglobal variables.

449 Software Engineering Observation 6.12
& %

6.18 Function Overloading 243

<= Error-Prevention Tip 6.7
= | Abways using the unary scope resolution operator (: :) to refer to a global variable elimi-
ST nates logic errors that might occur if a nonglobal variable hides the global variable.

< Error-Prevention Tip 6.8
g | Avoid using variables of the same name for different purposes in a program. Although this
is allowed in various circumstances, it can lead to errors.

6.18 Function Overloading

C++ enables several functions of the same name to be defined, as long as they have differ-
ent signatures. This is called function overloading. The C++ compiler selects the proper
function to call by examining the number, types and order of the arguments in the call.
Function overloading is used to create several functions of the same name that perform
similar tasks, but on different data types. For example, many functions in the math library
are overloaded for different numeric types—the C++ standard requires float, double and
long double overloaded versions of the math library functions discussed in Section 6.3.

w73 Good Programming Practice 6.7
} Overloading functions that perform closely related tasks can make programs more read-

able and understandable.

Overloaded square Functions

Figure 6.23 uses overloaded square functions to calculate the square of an int (lines 7—
11) and the square of a doubTe (lines 14-18). Line 22 invokes the int version of function
square by passing the literal value 7. C++ treats whole number literal values as type int.
Similarly, line 24 invokes the double version of function square by passing the literal val-
ue 7.5, which C++ treats as a double. In each case the compiler chooses the proper func-
tion to call, based on the type of the argument. The last two lines of the output window
confirm that the proper function was called in each case.

1 // Fig. 6.23: fig06_23.cpp

2 // Overloaded square functions.

3 #include <iostream>

4 using namespace std;

5

6 // function square for int values

7 1int square(int x)

8 {

9 cout << << X << ;
10 return x * x;

11 } // end function square with int argument
12

Fig. 6.23 | Overloaded square functions. (Part | of 2.)

244 Chapter 6 Functions and an Introduction to Recursion

13 // function square for double values
14 double square(double y)

15 {

16 cout << <<y << ;
17 return y * y;

18 1} // end function square with double argument
19

20 int main(Q)

21 {

22 cout << square(7); // calls int version
23 cout << endl;

24 cout << square(7.5); // calls double version
25 cout << endl;

26 1} // end main

square of integer 7 is 49
square of double 7.5 is 56.25

Fig. 6.23 | Overloaded square functions. (Part 2 of 2.)

How the Compiler Differentiates Among Overloaded Functions

Overloaded functions are distinguished by their signarures. A signature is a combination of
a function’s name and its parameter types (in order). The compiler encodes each function
identifier with the types of its parameters (sometimes referred to as name mangling or
name decoration) to enable type-safe linkage. Type-safe linkage ensures that the proper
overloaded function is called and that the types of the arguments conform to the types of
the parameters.

Figure 6.24 was compiled with GNU C++. Rather than showing the execution
output of the program (as we normally would), we show the mangled function names pro-
duced in assembly language by GNU C++. Each mangled name (other than main) begins
with two underscores (__) followed by the letter Z, a number and the function name. The
number that follows Z specifies how many characters are in the function’s name. For
example, function square has 6 characters in its name, so its mangled name is prefixed
with _76. The function name is then followed by an encoding of its parameter list. In the
parameter list for function nothing2 (line 25; see the fourth output line), c represents a
char, i represents an int, Rf represents a float & (i.e., a reference to a float) and Rd rep-
resents a double & (i.e., a reference to a double). In the parameter list for function noth-
ingl, i represents an int, f represents a float, c represents a char and Ri represents an
int & The two square functions are distinguished by their parameter lists; one specifies d
for double and the other specifies 1 for int. The return types of the functions are noz spec-
ified in the mangled names. Overloaded functions can have different return types, but if they
do, they must also have different parameter lists. Again, you cannor have two functions with
the same signature and different return types. Function-name mangling is compiler spe-
cific. Also, function main is 7oz mangled, because it cannor be overloaded.

7 Common Programming Error 6.10
=3 . . .
'2‘ Creating overloaded functions with identical parameter lists and different return types is

- a compilation error.

6.18 Function Overloading 245

1 // Fig. 6.24: fig06_24.cpp

2 // Name mangling to enable type-safe linkage.
3

4 // function square for int values

5 int square(int x)

6 {

7 return x * Xx;

8 1} // end function square

9

10 // function square for double values

11 double square(double y)

12 {

13 return y * y;

14 1} // end function square

15

16 // function that receives arguments of types
17 // int, float, char and int &

18 void nothingl(int a, float b, char c, int &d)
19 {
20 // empty function body
21 } // end function nothingl
22
23 // function that receives arguments of types
24 // char, int, float & and double &
25 int nothing2(char a, int b, float &c, double &d)
26 {
27 return 0;
28 } // end function nothing2
29
30 int main()
31 {
32 } // end main

__Z6squarei

__Z6squared

__Z8nothinglifcRi

__Z8nothing2ciRfRd

main

Fig. 6.24 | Name mangling to enable type-safe linkage.

The compiler uses only the parameter lists to distinguish between overloaded func-
tions. Such functions need 7o# have the same number of parameters. Use caution when
overloading functions with default parameters, because this may cause ambiguity.

2 Common Programming Error 6.11

A function with default arguments omitted might be called identically to another over-
loadled function; this is a compilation error. For example, having a program that contains
both @ function that explicitly takes no arguments and a function of the same name that
contains all default arguments results in a compilation error when an attempt is made to
use that function name in a call passing no arguments. The compiler cannot determine
which version of the function to choose.

e 5

246 Chapter 6 Functions and an Introduction to Recursion

Overloaded Operators

In Chapter 10, we discuss how to overload gperators to define how they should operate on
objects of user-defined data types. (In fact, we've been using many overloaded operators
to this point, including the stream insertion << and the stream extraction >> operators,
which are overloaded for 4// the fundamental types. We say more about overloading <<
and >> to be able to handle objects of user-defined types in Chapter 10.)

6.19 Function Templates

Overloaded functions are normally used to perform similar operations that involve differ-
ent program logic on different data types. If the program logic and operations are identical
for each data type, overloading may be performed more compactly and conveniently by
using function templates. You write a single function template definition. Given the ar-
gument types provided in calls to this function, C++ automatically generates separate
function template specializations to handle each type of call appropriately. Thus, defining
a single function template essentially defines a whole family of overloaded functions.
Figure 6.25 defines a maximum function template (lines 3—17) that determines the largest
of three values. All function template definitions begin with the template keyword (line 3)
followed by a template parameter list to the function template enclosed in angle brackets (<
and >). Every parameter in the template parameter list (often referred to as a formal type
parameter) is preceded by keyword typename or keyword class (they are synonyms in this
context). The formal type parameters are placeholders for fundamental types or user-defined
types. These placeholders, in this case, T, are used to specify the types of the function’s
parameters (line 4), to specify the function’s return type (line 4) and to declare variables
within the body of the function definition (line 6). A function template is defined like any
other function, but uses the formal type parameters as placeholders for actual data types.

1 // Fig. 6.25: maximum.h

2 // Function template maximum header.

3 template < typename T > // or template< class T >

4 T maximum(T valuel, T value2, T value3)

5 {

6 T maximumValue = valuel; // assume valuel is maximum

7

8 // determine whether value2 is greater than maximumValue
9 if (value2 > maximumValue)

10 maximumValue = value2;

11

12 // determine whether value3 is greater than maximumValue
13 if (value3 > maximumValue)

14 maximumValue = value3;

15

16 return maximumValue;

17 } // end function template maximum

Fig. 6.25 | Function template maximum header.

The function template declares a single formal type parameter T (line 3) as a place-
holder for the type of the data to be tested by function maximum. The name of a type

6.19 Function Templates 247

parameter must be unique in the template parameter list for a particular template defini-
tion. When the compiler detects a maximum invocation in the program source code, the #ype
of the data passed to maximum is substituted for T throughout the template definition, and
C++ creates a complete function for determining the maximum of three values of the spec-
ified data type—all three must have the same type, since we use only one type parameter
in this example. Then the newly created function is compiled—templates are a means of
code generation.

Figure 6.26 uses the maximum function template to determine the largest of three int
values, three double values and three char values, respectively (lines 17, 27 and 37). Sep-
arate functions are created as a result of the calls in lines 17, 27 and 37—expecting three
int values, three double values and three char values, respectively.

1 // Fig. 6.26: fig06_26.cpp

2 // Function template maximum test program.

3 #include <iostream>

4 #include "maximum.h" // include definition of function template maximum
5 using namespace std;

6

7 dint mainQ)

8 {

9 // demonstrate maximum with int values

10 int intl, int2, int3;

11

12 cout << "Input three integer values: ";

13 cin >> intl >> int2 >> int3;

14

15 // invoke int version of maximum

16 cout << "The maximum integer value 1is: "
17 << maximum(intl, int2, int3);

18

19 // demonstrate maximum with double values
20 double doublel, double2, double3;
21
22 cout << "\n\nInput three double values: ";
23 cin >> doublel >> double2 >> double3;
24
25 // invoke double version of maximum
26 cout << "The maximum double value is: "
27 << maximum(doublel, double2, double3);
28
29 // demonstrate maximum with char values
30 char charl, char2, char3;
31
32 cout << "\n\nInput three characters: ";
33 cin >> charl >> char2 >> char3;
34
35 // invoke char version of maximum
36 cout << "The maximum character value 1is: "
37 << maximum(charl, char2, char3) << endl;

38 } // end main

Fig. 6.26 | Function template maximum test program. (Part | of 2.)

248 Chapter 6 Functions and an Introduction to Recursion

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

Fig. 6.26 | Function template maximum test program. (Part 2 of 2.)

The function template specialization created for type int replaces each occurrence of
T with int as follows:

int maximum(int valuel, 1int value2, 1int value3)

{

int maximumValue = valuel; // assume valuel is maximum

// determine whether value2 is greater than maximumValue
if (value2 > maximumValue)
maximumValue = value2;

// determine whether value3 1is greater than maximumValue
if (value3 > maximumValue)
maximumValue = value3;

return maximumValue;
} // end function template maximum

m C++11—Trailing Return Types for Functions

, C++11 introduces trailing return types for functions. To specify a trailing return type you
place the keyword auto before the function name, then follow the function’s parameter
list with -> and the return type. For example, to specify a trailing return type for function
template maximum (Fig. 6.25), you’d write

template < typename T >
auto maximum(T x, Ty, Tz) -> T

As you build more complex function templates, there are cases for which only trailing re-
turn types are allowed. Such complex function templates are beyond this book’s scope.

6.20 Recursion

For some problems, it’s useful to have functions call themselves. A recursive function is a
function that calls itself, either directly, or indirectly (through another function). [Noze:
The C++ standard document indicates that main should not be called within a program or
recursively. Its sole purpose is to be the starting point for program execution.] This section
and the next present simple examples of recursion. Recursion is discussed at length in up-
per-level computer-science courses. Figure 6.32 (at the end of Section 6.22) summarizes
the extensive recursion examples and exercises in the book.

Recursion Concepts
We first consider recursion conceptually, then examine programs containing recursive
functions. Recursive problem-solving approaches have a number of elements in common.

6.20 Recursion 249

A recursive function is called to solve a problem. The function knows how to solve only
the simplest case(s), or so-called base case(s). If the function is called with a base case, the
function simply returns a result. If the function is called with a more complex problem, it
typically divides the problem into two conceptual pieces—a piece that the function knows
how to do and a piece that it does not know how to do. To make recursion feasible, the
latter piece must resemble the original problem, but be a slightly simpler or smaller version.
This new problem looks like the original, so the function calls a copy of itself to work on
the smaller problem—this is referred to as a recursive call and is also called the recursion
step. The recursion step often includes the keyword return, because its result will be com-
bined with the portion of the problem the function knew how to solve to form the result
passed back to the original caller, possibly main.

71 Common Programming Error 6.12
(75 Omitting the base case or writing the recursion step incorrectly so that it does not converge
on the base case causes an infinite recursion error, typically causing a stack overflow. This

is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

The recursion step executes while the original call to the function is still “open,” i.c.,
it has not yet finished executing. The recursion step can result in many more such recursive
calls, as the function keeps dividing each new subproblem with which the function is
called into two conceptual pieces. In order for the recursion to eventually terminate, each
time the function calls itself with a slightly simpler version of the original problem, this
sequence of smaller and smaller problems must eventually converge on the base case. At
that point, the function recognizes the base case and returns a result to the previous copy
of the function, and a sequence of returns ensues up the line undil the original call eventu-
ally returns the final result to main. This sounds quite exotic compared to the kind of
problem solving we’ve been using to this point. As an example of these concepts at work,
let’s write a recursive program to perform a popular mathematical calculation.

Factorial
The factorial of a nonnegative integer 7, written 7! (and pronounced “z factorial”), is the
product

n- n=-1)-n=2).-...-1

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5-4-3-2 -1,
which is equal to 120.

Iterative Factorial
The factorial of an integer, number, greater than or equal to 0, can be calculated iteratively
(nonrecursively) by using a for statement as follows:

factorial = 1;

for (unsigned int counter = number; counter >= 1; --counter)
factorial *= counter;

Recursive Factorial
A recursive definition of the factorial function is arrived at by observing the following al-
gebraic relationship:

nl=n- (n-1)

250 Chapter 6 Functions and an Introduction to Recursion

For example, 5! is clearly equal to 5 * 4! as is shown by the following:

5!1=5.4.3.2.1
5!=5.(4-3-2-1)
5=5.(4)

Evaluating 5!

The evaluation of 5! would proceed as shown in Fig. 6.27, which illustrates how the suc-
cession of recursive calls proceeds until 1! is evaluated to be 1, terminating the recursion.
Figure 6.27(b) shows the values returned from each recursive call to its caller until the final
value is calculated and returned.

(a) Procession of recursive calls (b) Values returned from each recursive call

Final value = 120

5! 5!
l T 50=5*24=120is returned
5 % 41 5 % 41
l T 41'=4*6=24is returned
4 * 31 4 % 31
l T 31=3*2==6is returned
3 = 2l 3 % 21
l T 21=2* | =2is returned
7 53 L] 2 & Ll
l T I returned
1 1

Fig. 6.27 | Recursive evaluation of 5!.

Using a Recursive factorial Function to Calculate Factorials

Figure 6.28 uses recursion to calculate and print the factorials of the integers 0-10. (The
choice of the data type unsigned Tong is explained momentarily.) The recursive function
factorial (lines 18-24) first determines whether the terminating condition number <= 1
(line 20) is true. If number is less than or equal to 1, the factorial function returns 1 (line
21), no further recursion is necessary and the function terminates. If number is greater than
1, line 23 expresses the problem as the product of number and a recursive call to factorial
evaluating the factorial of number - 1, which is a slightly simpler problem than the original
calculation factorial(number).

Why We Chose Type unsigned long in This Example

Function factorial has been declared to receive a parameter of type unsigned Tong and re-
turn a result of type unsigned Tong. This is shorthand notation for unsigned Tong int. The
C++ standard requires that a variable of type unsigned Tong int be at least as big as an int.

6.20 Recursion 251

1 // Fig. 6.28: fig06_28.cpp

2 // Recursive function factorial.

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 unsigned long factorial(unsigned long); // function prototype
8

9 dint main()
10 {
11 // calculate the factorials of 0 through 10
12 for (unsigned int counter = 0; counter <= ; ++counter)
13 cout << setw() << counter << << factorial(counter)
14 << endl;
I5 } // end main
16
17 // recursive definition of function factorial
18 unsigned long factorial(unsigned lTong number)
19 {
20 if (number <=) // test for base case
21 return 1; // base cases: 0! =1 and 1! =1
22 else // recursion step
23 return number * factorial(number -)
24 } // end function factorial

0! =1

1! =1

2! =2

3 =6

41 = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

Fig. 6.28 | Recursive function factorial.

Typically, an unsigned Tong int is stored in at least four bytes (32 bits); such a variable can
hold a value in the range 0 to at least 4,294,967,295. (The data type Tong int is also typically
stored in at least four bytes and can hold a value at least in the range —2,147,483,647 to
2,147,483,647.) As can be seen in Fig. 6.28, factorial values become large quickly. We chose
the data type unsigned Tong so that the program can calculate factorials greater than 7! on
computers with small (such as two-byte) integers. Unfortunately, the function factorial
produces large values so quickly that even unsigned Tong does not help us compute many
factorial values before even the size of an unsigned Tong variable is exceeded.

C++11 Type unsigned Tong Tong int
C++11’s new unsigned Tong Tong int type (which can be abbreviated as unsigned Tong
Tong) on some systems enables you to store values in 8 bytes (64 bits) which can hold num-

bers as large as 18,446,744,073,709,551,615.

3

252 Chapter 6 Functions and an Introduction to Recursion

Representing Even Larger Numbers

Variables of type double could be used to calculate factorials of larger numbers. This
points to a weakness in many programming languages, namely, that the languages are not
easily extended to handle the unique requirements of various applications. As we'll see
when we discuss object-oriented programming in more depth, C++ is an extensible lan-
guage that allows us to create classes that can represent arbitrarily large integers if we wish.
Such classes already are available in popular class libraries, and we work on similar classes
of our own in Exercise 9.14 and Exercise 10.9.

6.21 Example Using Recursion: Fibonacci Series

The Fibonacci series
0,1,1,2,3,5,8,13,21, ...

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value of 1.618.... This number fre-
quently occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden mean length/width ratio.

Recursive Fibonacci Definition
The Fibonacci series can be defined recursively as follows:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(z) = fibonacci(z — 1) + fibonacci(z — 2)

The program of Fig. 6.29 calculates the #th Fibonacci number recursively by using func-
tion fibonacci. Fibonacci numbers tend to become large quickly, although slower than
factorials do. Therefore, we chose the data type unsigned Tong for the parameter type and
the return type in function fibonacci. Figure 6.29 shows the execution of the program,
which displays the Fibonacci values for several numbers.

The application begins with a for statement that calculates and displays the Fibonacci
values for the integers 0-10 and is followed by three calls to calculate the Fibonacci values of
the integers 20, 30 and 35 (lines 16-18). The calls to fibonacci (lines 13 and 16-18) from
main are not recursive calls, but the calls from line 27 of fibonacci are recursive. Each time
the program invokes fibonacci (lines 22-28), the function immediately tests the base case
to determine whether number is equal to 0 or 1 (line 24). If this is true, line 25 returns number.
Interestingly, if number is greater than 1, the recursion step (line 27) generates fwo recursive
calls, each for a slightly smaller problem than the original call to fibonacci.

1 // Fig. 6.29: fig06_29.cpp
2 // Recursive function fibonacci.
3 #include <iostream>

Fig. 6.29 | Recursive function fibonacci. (Part | of 2.)

6.21 Example Using Recursion: Fibonacci Series 253

4 using namespace std;

5

6 unsigned long fibonacci(unsigned long); // function prototype
7

8 dint mainQ

9 {

10 // calculate the fibonacci values of 0 through 10

11 for (unsigned int counter = 0; counter <= ; ++counter)
12 cout << << counter <<

13 << fibonacci(counter) << endl;

14

15 // display higher fibonacci values

16 cout << << fibonacci() << endl;
17 cout << << fibonacci() << endl;
18 cout << << fibonacci() << endl;
19 } // end main
20

21 // recursive function fibonacci
22 unsigned long fibonacci(unsigned long number)
23 {

24 if C C == number) || (== number)) // base cases
25 return number;

26 else // recursion step

27 return fibonacci(number -) + fibonacci(number -

28 1} // end function fibonacci

E

fibonacci(0) =0
fibonacci(1) =1
fibonacci(2) = 1
fibonacci(3) = 2
fibonacci(4) = 3
fibonacci(5) =5
fibonacci(6) = 8
fibonacci(7) = 13
fibonacci(8) = 21
fibonacci(9) = 34
fibonacci(10) = 55
fibonacci(20) = 6765
fibonacci(30) = 832040
fibonacci(35) = 9227465

Fig. 6.29 | Recursive function fibonacci. (Part 2 of 2.)

Evaluating fibonacci(3)

Figure 6.30 shows how function fibonacci would evaluate fibonacci(3). This figure
raises some interesting issues about the order in which C++ compilers evaluate the oper-
ands of operators. This is a separate issue from the order in which operators are applied to
their operands, namely, the order dictated by the rules of operator precedence and associa-
tivity. Figure 6.30 shows that evaluating fibonacci (3) causes two recursive calls, namely,

fibonacci (2) and fibonacci (1). In what order are these calls made?

254 Chapter 6 Functions and an Introduction to Recursion

fibonacci(3)

'

return fibonacci(2) + fibonacci(1)

i N

return fibonacci(1) + fibonacci(0) return 1
) ——— t—
return 1 return 0

Fig. 6.30 | Set of recursive calls to function fibonacci.

Order of Evaluation of Operands

Most programmers simply assume that the operands are evaluated left to right. C++ does
not specify the order in which the operands of most operators (including +) are to be eval-
uated. Therefore, you must make no assumption about the order in which these calls ex-
ecute. The calls could in fact execute fibonacci(2) first, then fibonacci(1), or they
could execute in the reverse order: fibonacci(1), then fibonacci(2). In this program
and in most others, it turns out that the final result would be the same. However, in some
programs the evaluation of an operand can have side effects (changes to data values) that
could affect the final result of the expression.

C++ specifies the order of evaluation of the operands of only four operators—&&, |1,
comma (,) and ?:. The first three are binary operators whose two operands are guaranteed
to be evaluated left to right. The last operator is C++’s only rernary operator—its leftmost
operand is always evaluated first; if it evaluates to true, the middle operand evaluates next
and the last operand is ignored; if the leftmost operand evaluates to false, the third operand
evaluates next and the middle operand is ignored.

Portability Tip 6.2
- Programs that depend on the order of evaluation of the operands of operators other than
Ll && ||, ?: and the comma (,) operator can function differently with different compilers
and can lead to logic errors.

—n Common Programming Error 6.13
‘t Writing programs that depend on the order of evaluation of the operands of operators oth-
erthan &8& ||, ?: and the comma (,) operator can lead to logic errors.
2= Error-Prevention Tip 6.9

%I | Do not depend on the order in which operands are evaluated. To ensure that side effects
are applied in the correct order, break complex expressions into separate statements.

6.22 Recursion vs. Iteration 255

7 Common Programming Error 6.14

=

'Z Recall that the & and || operators use short-circuit evaluation. Placing an expression
- with a side effect on the right side of a && or || operator is a logic error if that expression
should always be evaluated.

Exponential Complexity

A word of caution is in order about recursive programs like the one we use here to generate
Fibonacci numbers. Each level of recursion in function fibonacci has a doubling effect on
the number of function calls; i.e., the number of recursive calls that are required to calcu-
late the nth Fibonacci number is on the order of 2”. This rapidly gets out of hand. Calcu-
lating only the 20 Fibonacci number would require on the order of 220 or about a million
calls, calculating the 30™ Fibonacci number would require on the order of 23% or about a
billion calls, and so on. Computer scientists refer to this as exponential complexity. Prob-
lems of this nature humble even the world’s most powerful computers! Complexity issues
in general, and exponential complexity in particular, are discussed in detail in the upper-
level computer science course generally called “Algorithms.”

w1 Performance Tip 6.8
- Avoid Fibonacci-style recursive programs that result in an exponential “explosion” of calls.

6.22 Recursion vs. Iteration

In the two previous sections, we studied two recursive functions that can also be imple-
mented with simple iterative programs. This section compares the two approaches and dis-
cusses why you might choose one approach over the other in a particular situation.

e Both iteration and recursion are based on a control statement: Iteration uses a
repetition structure; recursion uses a selection structure.

* Both iteration and recursion involve repetition: Iteration explicitly uses a repeti-
tion structure; recursion achieves repetition through repeated function calls.

e Jteration and recursion each involve a termination test: Iteration terminates when
the loop-continuation condition fails; recursion terminates when a base case is rec-
ognized.

e Iteration with counter-controlled repetition and recursion each gradually ap-
proach termination: Iteration modifies a counter until the counter assumes a value
that makes the loop-continuation condition fail; recursion produces simpler ver-
sions of the original problem until the base case is reached.

e Both iteration and recursion can occur infinitely: An infinite loop occurs with iter-
ation if the loop-continuation test never becomes false; infinite recursion occurs if
the recursion step does not reduce the problem during each recursive call in a
manner that converges on the base case.

Iterative Factorial Implementation
To illustrate the differences between iteration and recursion, let’s examine an iterative solu-
tion to the factorial problem (Fig. 6.31). A repetition statement is used (lines 23-24 of

256 Chapter 6 Functions and an Introduction to Recursion

Fig. 6.31) rather than the selection statement of the recursive solution (lines 20-23 of
Fig. 6.28). Both solutions use a termination test. In the recursive solution, line 20 (Fig. 6.28)
tests for the base case. In the iterative solution, line 23 (Fig. 6.31) tests the loop-continuation
condition—if the test fails, the loop terminates. Finally, instead of producing simpler ver-
sions of the original problem, the iterative solution uses a counter that is modified until the
loop-continuation condition becomes false.

1 // Fig. 6.31: fig06_31.cpp

2 // Iterative function factorial.

3 #include <iostream>

4 #include <iomanip>

5 using namespace std;

6

7 unsigned long factorial(unsigned int); // function prototype
8

9 dint main()

10 {

11 // calculate the factorials of 0 through 10

12 for (unsigned int counter = 0; counter <= ; ++counter)
13 cout << setw() << counter << << factorial(counter)
14 << endl;

I5 } // end main

16

17 // iterative function factorial
18 unsigned long factorial(unsigned int number)

19 {
20 unsigned long result = 1;
21
22 // iterative factorial calculation
23 for (unsigned int i = number; i >= 1; --i)
24 result *= 7;
25
26 return result;
27 1} // end function factorial
0! =1
1! =1
2! =2
31 =6
41 = 24
5! =120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
Fig. 6.31 | Iterative function factorial.

Negatives of Recursion

Recursion has negatives. It repeatedly invokes the mechanism, and consequently the over-
head, of function calls. This can be expensive in both processor time and memory space. Each
recursive call causes another copy of the function variables to be created; this can consume con-

6.22 Recursion vs. Iteration 257

siderable memory. Iteration normally occurs within a function, so the overhead of repeated
function calls and extra memory assignment is omitted. So why choose recursion?

Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
2 A recursive approach is normally chosen when the recursive approach more naturally
mirrors the problem and results in a program that’s easier to understand and debug.
Another reason to choose a recursive solution is that an iterative solution is not apparent.

é!‘ Software Engineering Observation 6.13

. Performance Tip 6.9
Jl—" ﬁf‘ Avoid using recursion in performance situations. Recursive calls take time and consume
' additional memory.

5

Accidentally having a nonrecursive function call itself, either directly or indirectly
(through another function), is a logic error.

:‘_':i .-f Common Programming Error 6.15

e 5

Summary of Recursion Examples and Exercises in This Book
Figure 6.32 summarizes the recursion examples and exercises in the text.

Location in text Recursion examples and exercises
Chapter 6

Section 6.20, Fig. 6.28 Factorial function

Section 6.21, Fig. 6.29 Fibonacci function

Exercise 6.36 Recursive exponentiation

Exercise 6.38 Towers of Hanoi

Exercise 6.40 Visualizing recursion

Exercise 6.41 Greatest common divisor

Exercise 6.44, Exercise 6.45 “What does this program do?” exercise
Chapter 7

Exercise 7.17 “What does this program do?” exercise
Exercise 7.20 “What does this program do?” exercise
Exercise 7.28 Determine whether a string is a palindrome
Exercise 7.29 Eight Queens

Exercise 7.30 Print an array

Exercise 7.31 Print a string backward

Exercise 7.32 Minimum value in an array

Exercise 7.33 Maze traversal

Exercise 7.34 Generating mazes randomly

Fig. 6.32 | Summary of recursion examples and exercises in the text. (Part | of 2.)

258 Chapter 6 Functions and an Introduction to Recursion

Location in text Recursion examples and exercises

Chapter 19

Section 19.6, Figs. 19.20-19.22 Binary tree insert

Section 19.6, Figs. 19.20-19.22 Preorder traversal of a binary tree
Section 19.6, Figs. 19.20-19.22 Inorder traversal of a binary tree
Section 19.6, Figs. 19.20-19.22 Postorder traversal of a binary tree

Exercise 19.20 Print a linked list backward
Exercise 19.21 Search a linked list

Exercise 19.22 Binary tree delete

Exercise 19.23 Binary tree search

Exercise 19.24 Level order traversal of a binary tree
Exercise 19.25 Printing tree

Chapter 20

Section 20.3.3, Fig. 20.6 Mergesort

Exercise 20.8 Linear search

Exercise 20.9 Binary search

Exercise 20.10 Quicksort

Fig. 6.32 | Summary of recursion examples and exercises in the text. (Part 2 of 2.)

6.23 Wrap-Up

In this chapter, you learned more about function declarations, including function proto-
types, function signatures, function headers and function bodies. We overviewed the math
library functions. You learned about argument coercion, or the forcing of arguments to
the appropriate types specified by the parameter declarations of a function. We demon-
strated how to use functions rand and srand to generate sets of random numbers that can
be used for simulations. We showed how to define sets of constants with enums. You also
learned about the scope of variables, storage-class specifiers and storage duration. Two dif-
ferent ways to pass arguments to functions were covered—pass-by-value and pass-by-ref-
erence. For pass-by-reference, references are used as an alias to a variable. We showed how
to implement inline functions and functions that receive default arguments. You learned
that multiple functions in one class can be overloaded by providing functions with the
same name and different signatures. Such functions can be used to perform the same or
similar tasks, using different types or different numbers of parameters. We demonstrated
a simpler way of overloading functions using function templates, where a function is de-
fined once but can be used for several different types. You then studied recursion, where
a function calls itself to solve a problem.

In Chapter 7, you’ll learn how to maintain lists and tables of data in arrays and object-
oriented vectors. You'll see a more elegant array-based implementation of the dice-rolling
application and two enhanced versions of the GradeBook case study we presented in
Chapters 3—6 that will use arrays to store the actual grades entered.

Summary 259

Summary

Section 6.1 Introduction
* Experience has shown that the best way to develop and maintain a large program is to construct

it from small, simple pieces, or components. This technique is called divide and conquer
(p. 202).

Section 6.2 Program Components in C++
e Ci++ programs are typically written by combining new functions and classes you write with “pre-
packaged” functions and classes available in the C++ Standard Library.

* Functions allow you to modularize a program by separating its tasks into self-contained units.

 The statements in the function bodies are written only once, are reused from perhaps several lo-
cations in a program and are hidden from other functions.

Section 6.3 Math Library Functions

* Sometimes functions are not members of a class. These are called global functions (p. 204).

e The prototypes for global functions are often placed in headers, so that they can be reused in any
program that includes the header and that can link to the function’s object code.

Section 6.4 Function Definitions with Multiple Parameters

 The compiler refers to the function prototype to check that calls to a function contain the correct
number and types of arguments, that the types of the arguments are in the correct order and that
the value returned by the function can be used correctly in the expression that called the function.

e If a function does not return a result, control returns when the program reaches the function-
ending right brace, or by execution of the statement

return;
If a function does return a result, the statement

return €XPV€5§i0ﬂ 5

evaluates expression and returns the value of expression to the caller.

Section 6.5 Function Prototypes and Argument Coercion
* The portion of a function prototype that includes the name of the function and the types of its
arguments is called the function signature (p. 211) or simply the signature.

* An important feature of function prototypes is argument coercion (p. 211)—i.e., forcing argu-
ments to the appropriate types specified by the parameter declarations.
* Arguments can be converted by the compiler to the parameter types as specified by C++’s pro-

motion rules (p. 211). The promotion rules indicate the implicit conversions that the compiler
can perform between fundamental types.

Section 6.6 C++ Standard Library Headers
e The C++ Standard Library is divided into many portions, each with its own header. The headers
also contain definitions of various class types, functions and constants.

* A header “instructs” the compiler on how to interface with library components.

Section 6.7 Case Study: Random Number Generation
e Calling rand (p. 214) repeatedly produces a sequence of pseudorandom numbers (p. 217). The
sequence repeats itself each time the program executes.

260 Chapter 6 Functions and an Introduction to Recursion

To randomize the numbers produced by rand pass an unsigned integer argument (typically from
function time; p. 219) to function srand (p. 217), which seeds the rand function.

Random numbers in a range can be generated with

number = shiftingValue + rand() % scalingFactor;

where shiftingValue (p. 219) is equal to the first number in the desired range of consecutive inte-
gers and scalingFactor (p. 219) is equal to the width of the desired range of consecutive integers.

Section 6.8 Case Study: Game of Chance; Introducing enum

* An enumeration, introduced by the keyword enum and followed by a type name (p. 222), is a set
of named integer constants (p. 222) that start at 0, unless specified otherwise, and increment by 1.

Unscoped enums can lead to naming collisions and logic errors. To eliminate these problems,
C++11 introduces scoped enums (p. 223), which are declared with the keywords enum class (or
the synonym enum struct).

To reference a scoped enum constant, you must qualify the constant with the scoped enum’s type
name and the scope-resolution operator (: :). If another scoped enum contains the same identifier
for one of its constants, it’s always clear which version of the constant is being used.

The constants in an enum are represented as integers.

An unscoped enum’s underlying integral type depends on its constants’ values—the type is guar-
anteed to be large enough to store the constant values specified.

A scoped enum’s underlying integral type is int by default.

C++11 allows you to specify an enum’s underlying integral type by following the enum’s type name
with a colon (:) and the integral type.

A compilation error occurs if an enum constant’s value is outside the range that can be represented
by the enum’s underlying type.

Section 6.9 C++11 Random Numbers

According to CERT, function rand does not have “good statistical properties” and can be pre-
dictable, which makes programs that use rand less secure

C++11 provides a new, more secure library of random-number capabilities that can produce
nondeterministic random numbers for simulations and security scenarios where predictability is
undesirable. These new capabilities are located in the C++ Standard Library’s <random> header.

For flexibility based on how random numbers are used in programs, C++11 provides many class-
es that represent various random-number generation engines and distributions. An engine im-
plements a random-number generation algorithm that produce pseudorandom numbers. A
distribution controls the range of values produced by an engine, the types of those values and the
statistical properties of the values.

The type default_random_engine (p. 224) represents the default random-number generation
engine.

The uniform_int_distribution (p. 224) evenly distributes pseudorandom integers over a speci-
fied range of values. The default range is from 0 to the maximum value of an int on your platform.

Section 6.10 Storage Classes and Storage Duration

An identifier’s storage duration (p. 225) determines the period during which it exists in memory.
An identifier’s scope is where the identifier can be referenced in a program.

An identifier’s linkage (p. 225) determines whether it's known only in the source file where it’s
declared or across multiple files that are compiled, then linked together.

Summary 261

Variables with automatic storage duration include: local variables declared in functions, function
parameters and local variables or function parameters declared with register (p. 225). Such
variables are created when program execution enters the block in which they’re defined, exist
while the block is active and are destroyed when the program exits the block.

Keywords extern (p. 225) and static declare identifiers for variables of the static storage dura-
tion (p. 225) and for functions. Static-storage-duration variables exist from the point at which
the program begins execution until the program terminates.

A static-storage-duration variable’s storage is allocated when the program begins execution. Such
a variable is initialized once when its declaration is encountered. For functions, the name of the
function exists when the program begins execution as for all other functions.

External identifiers (such as global variables) and local variables declared with the storage class-
specifier static have static storage duration (p. 225).

Global variables (p. 227) declarations are placed outside any class or function definition. Global
variables retain their values throughout the program’s execution. Global variables and functions
can be referenced by any function that follows their declarations or definitions.

Unlike automatic variables, static local variables retain their values when the function in which
they’re declared returns to its caller.

Section 6.11 Scope Rules

An identifier declared outside any function or class has global namespace scope (p. 228).

Identifiers declared inside a block have block scope (p. 228), which begins at the identifier’s decla-
ration and ends at the terminating right brace (}) of the block in which the identifier is declared.

Labels are the only identifiers with function scope (p. 228). Labels can be used anywhere in the
function in which they appear, but cannot be referenced outside the function body.

An identifier declared outside any function or class has global namespace scope. Such an identi-
fier is “known” in all functions from the point at which it’s declared until the end of the file.

Identifiers in the parameter list of a function prototype have function-prototype scope (p. 228).

Section 6.12 Function Call Stack and Activation Records

Stacks (p. 231) are known as last-in, first-out (LIFO) data structures—the last item pushed (in-
serted; p. 231) on the stack is the first item popped (removed; p. 231) from the stack.

The function call stack (p. 232) supports the function call/return mechanism and the creation,
maintenance and destruction of each called function’s automatic variables.

Each time a function calls another function, a stack frame or an activation record (p. 232) is
pushed onto the stack containing the return address that the called function needs to return to
the calling function, and the function call’s automatic variables and parameters.

The stack frame (p. 232) exists as long as the called function is active. When the called function
returns, its stack frame is popped from the stack, and its local automatic variables no longer exist.

Section 6.13 Functions with Empty Parameter Lists

In C++, an empty parameter list is specified by writing either void or nothing in parentheses.

Section 6.14 Inline Functions

C++ provides inline functions (p. 236) to help reduce function call overhead—especially for
small functions. Placing the qualifier inTine (p. 236) before a function’s return type in the func-
tion definition advises the compiler to generate a copy of the function’s code in every place that
the function is called to avoid a function call.

262 Chapter 6 Functions and an Introduction to Recursion

Compilers can inline code for which you have not explicitly used the in1ine keyword. Today’s
optimizing compilers are so sophisticated that it’s best to leave inlining decisions to the compiler.

Section 6.15 References and Reference Parameters

When an argument is passed by value (p. 237), a copy of the argument’s value is made and passed
to the called function. Changes to the copy do not affect the original variable’s value in the caller.

With pass-by-reference (p. 237), the caller gives the called function the ability to access the call-
er’s data directly and to modify it if the called function chooses to do so.

A reference parameter (p. 238) is an alias for its corresponding argument in a function call.

To indicate that a function parameter is passed by reference, follow the parameter’s type in the
function prototype and header by an ampersand (&).

All operations performed on a reference are actually performed on the original variable.

Section 6.16 Default Arguments

e When a function is called repeatedly with the same argument for a particular parameter, you can
specify that such a parameter has a default argument (p. 240).

When a program omits an argument for a parameter with a default argument, the compiler in-
serts the default value of that argument to be passed to the function call.

Default arguments must be the rightmost (trailing) arguments in a function’s parameter list.
g g g) arg

Default arguments are specified in the function prototype.

Section 6.17 Unary Scope Resolution Operator

C++ provides the unary scope resolution operator (p. 242), ::, to access a global variable when
a local variable of the same name is in scope.

Section 6.18 Function Overloading

C++ enables several functions of the same name to be defined, as long as these functions have
different sets of parameters. This capability is called function overloading (p. 243).

When an overloaded function is called, the C++ compiler selects the proper function by exam-
ining the number, types and order of the arguments in the call.

Overloaded functions are distinguished by their signatures.

The compiler encodes each function identifier with the types of its parameters to enable type-
safe linkage (p. 244). Type-safe linkage ensures that the proper overloaded function is called and
that the types of the arguments conform to the types of the parameters.

Section 6.19 Function Templates

Opverloaded functions typically perform similar operations that involve different program logic
on different data types. If the program logic and operations are identical for each data type, over-
loading may be performed more compactly and conveniently using function templates (p. 246).

Given the argument types provided in calls to a function template, C++ automatically generates
separate function template specializations (p. 246) to handle each type of call appropriately.

All function template definitions begin with the template keyword (p. 246) followed by a tem-
plate parameter list (p. 246) to the function template enclosed in angle brackets (< and >).

The formal type parameters (p. 246) are preceded by keyword typename (or class) and are place-
holders for fundamental types or user-defined types. These placeholders are used to specify the
types of the function’s parameters, to specify the function’s return type and to declare variables
within the body of the function definition.

Self-Review Exercises 263

C++11 introduces trailing return types for functions. To specify a trailing return type place auto
before the function name, then follow the function’s parameter list with -> and the return type.

Section 6.20 Recursion

A recursive function (p. 248) calls itself, either directly or indirectly.

A recursive function knows how to solve only the simplest case(s), or so-called base case(s). If the
function is called with a base case (p. 249), the function simply returns a result.

If the function is called with a more complex problem, the function typically divides the problem
into two conceptual pieces—a piece that the function knows how to do and a piece that it does
not know how to do. To make recursion feasible, the latter piece must resemble the original
problem, but be a slightly simpler or slightly smaller version of it.

For recursion to terminate, the sequence of recursive calls (p. 249) must converge on the base case.

C++11’s new unsigned Tong Tong int type (which can be abbreviated as unsigned Tong Tong) on
some systems enables you to store values in 8 bytes (64 bits) which can hold numbers as large as

18,4406,744,073,709,551,615.

Section 6.21 Example Using Recursion: Fibonacci Series

The ratio of successive Fibonacci numbers converges on a constant value of 1.618.... This num-
ber frequently occurs in nature and has been called the golden ratio or the golden mean (p. 252).

Section 6.22 Recursion vs. Iteration

Iteration (p. 249) and recursion are similar: both are based on a control statement, involve rep-
etition, involve a termination test, gradually approach termination and can occur infinitely.

Recursion repeatedly invokes the mechanism, and overhead, of function calls. This can be expen-
sive in both processor time and memory space. Each recursive call (p. 249) causes another copy
of the function’s variables to be created; this can consume considerable memory.

Self-Review Exercises

6.1

Answer each of the following:

a) Program components in C++ are called and

b) A function is invoked with a(n)

¢) A variable known only within the function in which it’s defined is called a(n)

d) The statement in a called function passes the value of an expression back to
the calling function.

e) The keyword is used in a function header to indicate that a function does not
return a value or to indicate that a function contains no parameters.

f) Anidentifier’s is the portion of the program in which the identifier can be used.

g) The three ways to return control from a called function to a caller are ,

and .

h) A(n) allows the compiler to check the number, types and order of the argu-
ments passed to a function.

i) Function is used to produce random numbers.

j) Function is used to set the random number seed to randomize the number
sequence generated by function rand.

k) Storage-class specifier is a recommendation to the compiler to store a variable
in one of the computer’s registers.

) A variable declared outside any block or function is a(n) variable.

m) For alocal variable in a function to retain its value between calls to the function, it must
be declared with the storage-class specifier.

264

6.2

n)
o)

p)

Chapter 6 Functions and an Introduction to Recursion

A function that calls itself either directly or indirectly (i.c., through another function)
is a(n) function.

A recursive function typically has two components—one that provides a means for the
recursion to terminate by testing for a(n) case and one that expresses the prob-
lem as a recursive call for a slightly simpler problem than the original call.

It’s possible to have various functions with the same name that operate on different
types or numbers of arguments. This is called function

The enables access to a global variable with the same name as a variable in the
current scope.

The qualifier is used to declare read-only variables.

A function enables a single function to be defined to perform a task on many

different data types.

For the program in Fig. 6.33, state the scope (either function scope, global namespace
scope, block scope or function-prototype scope) of each of the following elements:

a)
b)
o)
d)
e)
f)

The variable x in main.

The variable y in cube.

The function cube.

The function main.

The function prototype for cube.

The identifier y in the function prototype for cube.

Q0NN D WN -

o

10
11
12
13
14
15
16
17
18
19

// Exercise 6.2: Ex06_02.cpp
#include <iostream>

using

namespace std;

int cube(int y); // function prototype

int mainQ)
{
int x = 0;
for (x = 1; x <= ; X++) // loop 10 times

cout << cube(x) << endl; // calculate cube of x and output results

} // end main

// definition of function cube
int cube(int y)

{

return y * y * vy;
} // end function cube

Fig. 6.33 | Program for Exercise 6.2.

6.3

6.4

Werite a program that tests whether the examples of the math library function calls shown
in Fig. 6.2 actually produce the indicated results.

Give the function header for each of the following functions:

a)

b)
o)

d)

Function hypotenuse that takes two double-precision, floating-point arguments, sidel
and side2, and returns a double-precision, floating-point result.

Function smallest that takes three integers, x, y and z, and returns an integer.
Function instructions that does not receive any arguments and does not return a val-
ue. [Note: Such functions are commonly used to display instructions to a user.]
Function intToDouble that takes an integer argument, number, and returns a double-
precision, floating-point result.

6.5

6.6

6.7

6.8

Self-Review Exercises 265

Give the function prototype (without parameter names) for each of the following:
a) The function described in Exercise 6.4(a).
b) The function described in Exercise 6.4(b).
c¢) The function described in Exercise 6.4(c).
d) The function described in Exercise 6.4(d).

Write a declaration for each of the following:

a) Integer count that should be maintained in a register. Initialize count to 0.

b) Double-precision, floating-point variable 1astVal that s to retain its value between calls
to the function in which it’s defined.

Find the error(s) in each of the following program segments, and explain how the error(s)
can be corrected (see also Exercise 6.47):

a)

d)

e

int gO
{
cout << << endl;
int hQ
{
cout << << endl;
}
}
int sum(int x, int y)
{
int result = 0;
result = x + y;
}
int sum(int n)
{
if (0 ==n)
return 0;
else
n + sum(n -);
}
void f(double a);
{
float a;
cout << a << endl;
}
void product()
{
int a = 0;
int b = 0;
int c = 0;
cout << 5
cin >> a > b > c;
int result = a * b * c;
cout << << result;
return result;
}

Why would a function prototype contain a parameter type declaration such as double &

266 Chapter 6 Functions and an Introduction to Recursion

6.9 (True/False) All arguments to function calls in C++ are passed by value.

6.10 Write a complete program that prompts the user for the radius of a sphere, and calculates
and prints the volume of that sphere. Use an inline function sphereVolume that returns the result
of the following expression: (/ * * pow(radius, 3)).

Answers to Self-Review Exercises

6.1 a) functions, classes. b) function call. ¢) local variable. d) return. e) void. f) scope.
g) return;, return expression; or encounter the closing right brace of a function. h) function pro-
totype. i) rand. j) srand. k) register. 1) global. m) static. n) recursive. o) base. p) overloading.
q) unary scope resolution operator (::). r) const. s) template.

6.2 a) block scope. b) block scope. ¢) global namespace scope. d) global namespace scope.
¢) global namespace scope. f) function-prototype scope.

6.3 Sece the following program:

1 // Exercise 6.3: Ex06_03.cpp

2 // Testing the math T1ibrary functions.

3 #include <iostream>

4 #include <iomanip>

5 #include <cmath>

6 using namespace std;

7

8 1int mainQ)

9 {

10 cout << fixed << setprecision();

11

12 cout << << << << sqrt()3

13 cout << << << << setprecision()
14 << exp() << << setprecision() <<
15 << << setprecision() << exp()H

16 cout << << << << setprecision()
17 << Tog()

18 << << setprecision() << <<

19 << setprecision() << log();

20 cout << << << << 1logl0()
21 << << << << Togl0() ;
22 cout << << << << fabs()

23 << << << << fabs()

24 << << << << fabs();
25 cout << << << << ceil()

26 << << << << ceil();

27 cout << << << << floor()

28 << << << << floor();
29 cout << << << << <<

30 << pow(y) << << <<

31 << << << pow(s)H

32 cout << setprecision() <<

33 << << << <<

34 << fmod(s) << setprecision();

35 cout << << << << sin();

36 cout << << << << cos(H

37 cout << << << << tan() << endl;
38 } // end main

Answers to Self-Review Exercises 267

sqrt(9.0) = 3.
exp(1.0) = 2.718282
exp(2.0) = 7. 389056
log(2.718282) =
Tog(7.389056) =
10910(10.0) = 1
10910(100.0) =
fabs(5.1) = 5. 1
fabs(0.0) = 0. 0
fabs(-8.8) = 8.8
ceil(9.2) = 10.0
ceil(-9.8) =
floor(9.2) = 9.0
floor(-9.8) -1

.200) = 0.200

= 0.0
cos(0.0) = 1.0
tan(0.0) = 0.0

6.4 a) double hypotenuse(double sidel, double side2)
b) dint smallest(int x, int y, int z)
c) void instructions()
d) double intToDouble(int number)

6.5 a) double hypotenuse(double, double);
b) int smallest(int, int, int);
c¢) void instructions();
d) double intToDouble(int);

6.6 a) register int count = 0;
b) static double lastval;

6.7 a) Error: Function h is defined in function g.
Correction: Move the definition of h out of the definition of g.
b) Error: The function is supposed to return an integer, but does not.
Correction: Place a return result; statement at the end of the function’s body or delete
variable result and place the following statement in the function:

return x + y;

c) Error: The result of n + sum(n - 1) is not returned; sum returns an improper result.
Correction: Rewrite the statement in the else clause as

return n + sum(n - DE

d) Errors: Semicolon after the right parenthesis that encloses the parameter list, and re-
defining the parameter a in the function definition.
Corrections: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a;.

e) Error: The function returns a value when it isn’t supposed to.
Correction: Eliminate the return statement or change the return type.

6.8 This creates a reference parameter of type “reference to double” that enables the function
to modify the original variable in the calling function.

6.9 False. C++ enables pass-by-reference using reference parameters (and pointers, as we discuss

in Chapter 8).

268 Chapter 6 Functions and an Introduction to Recursion

6.10 Sece the following program:

| // Exercise 6.10 Solution: Ex06_10.cpp
2 // Inline function that calculates the volume of a sphere.
3 #include <jostream>
4 #include <cmath>
5 using namespace std;
6
7 const double ; // define global constant PI
8
9 // calculates volume of a sphere
10 inline double sphereVolume(const double radius)
11 {
12 return / * pow(radius,);
13 } // end inline function sphereVolume
14
15 int main(Q)
16 {
17 double radiusValue = 0;
18
19 // prompt user for radius
20 cout << ;
21 cin >> radiusValue; // input radius
22
23 // use radiusValue to calculate volume of sphere and display result
24 cout << << radiusValue
25 << << sphereVolume(radiusValue) << endl;
26 } // end main
Exercises
6.11 Show the value of x after each of the following statements is performed:
a) x = fabs()
b) x = floor()
c) x = fabs()
d) x = ceil()
e) x = fabs()
f) x = ceil()
g) x = ceil(-fabs(+ floor(DIDID)

6.12 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours. The garage charges an additional $0.50 per hour for each hour or part thereof in excess of three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no car parks for
longer than 24 hours at a time. Write a program that calculates and prints the parking charges for each
of three customers who parked their cars in this garage yesterday. You should enter the hours parked
for each customer. Your program should print the results in a neat tabular format and should calculate
and print the total of yesterday’s receipts. The program should use the function calculateCharges to
determine the charge for each customer. Your outputs should appear in the following format:

Car Hours
1 1.5
2 4.0
3 24.0

TOTAL 29.5

Charge
2.00
2.50
10.00
14.50

Exercises 269

6.13 (Rounding Numbers) An application of function floor is rounding a value to the nearest
integer. The statement

y = floor(x + DE

rounds the number x to the nearest integer and assigns the result to y. Write a program that reads
several numbers and uses the preceding statement to round each of these numbers to the nearest
integer. For each number processed, print both the original number and the rounded number.

6.14 (Rounding Numbers) Function floor can be used to round a number to a specific decimal
place. The statement

y = floor(x * +) / 10;
rounds x to the tenths position (the first position to the right of the decimal point). The statement
y = floor(x * +)/ c

rounds x to the hundredths position (the second position to the right of the decimal point). Write
a program that defines four functions to round a number x in various ways:

a) roundToInteger(number)

b) roundToTenths(number)

C) roundToHundredths (number)

d) roundToThousandths(number)

For each value read, your program should print the original value, the number rounded to the

nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth and the number rounded to the nearest thousandth.

6.15 (Short Answer Questions) Answer each of the following questions:
a) What does it mean to choose numbers “at random?”
b) Why is the rand function useful for simulating games of chance?
¢) Why would you randomize a program by using srand? Under what circumstances is it
desirable not to randomize?
d) Why is it often necessary to scale or shift the values produced by rand?
e) Why is computerized simulation of real-world situations a useful technique?

6.16 (Random Numbers) Write statements that assign random integers to the variable 7 in the
following ranges:

a) 1 <n<2

b) 1 <n <100

c 0<n<9

d) 1000 <» <1112
e) -1 <n <1

f) -3 <n <11

6.17 (Random Numbers) Write a single statement that prints a number at random from each of
the following sets:

a) 2,4,6,8,10.

b) 3,5,7,9, 11.

c) 6,10, 14, 18, 22.

6.18 (Exponentiation) Write a function integerPower (base, exponent) that returns the value of

base ©ponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3, Assume that exponent is a positive, nonzero
integer and that base is an integer. Do not use any math library functions.

270 Chapter 6 Functions and an Introduction to Recursion

6.19 (Hypotenuse Calculations) Define a function hypotenuse that calculates the hypotenuse of
a right triangle when the other two sides are given. The function should take two double arguments
and return the hypotenuse as a doubTe. Use this function in a program to determine the hypotenuse
for each of the triangles shown below.

Triangle Side I Side 2

1 3.0 4.0
2 5.0 12.0
3 8.0 15.0

6.20 (Multiples) Write a function multiple that determines for a pair of integers whether the sec-
ond is a multiple of the first. The function should take two integer arguments and return true if the
second is a multiple of the first, false otherwise. Use this function in a program that inputs a series
of pairs of integers.

6.21 (Even Numbers) Write a program that inputs a series of integers and passes them one at a time
to function isEven, which uses the modulus operator to determine whether an integer is even. The
function should take an integer argument and return true if the integer is even and false otherwise.

6.22 (Square of Asterisks) Write a function that displays at the left margin of the screen a solid
square of asterisks whose side is specified in integer parameter side. For example, if side is 4, the
function displays the following:

6.23 (Square of Any Character) Modify the function created in Exercise 6.22 to form the square
out of whatever character is contained in character parameter fillCharacter. Thus, if side is 5 and
fillCharacter is #, then this function should print the following:

HA#HH
#Ht#HH
#it###
HH#HH
#Ht#HH

6.24 (Separating Digits) Write program segments that accomplish each of the following:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
¢) Use the program pieces developed in (a) and (b) to write a function that inputs an in-
teger between 1 and 32767 and prints it as a series of digits, each pair of which is sepa-
rated by two spaces. For example, the integer 4562 should print as follows:

6.25 (Calculating Number of Seconds) Write a function that takes the time as three integer ar-
guments (hours, minutes and seconds) and returns the number of seconds since the last time the

Exercises 271

clock “struck 12.” Use this function to calculate the amount of time in seconds between two times,
both of which are within one 12-hour cycle of the clock.

6.26 (Celsius and Fahrenheit Temperatures) Implement the following integer functions:
a) Function celsius returns the Celsius equivalent of a Fahrenheit temperature.
b) Function fahrenheit returns the Fahrenheit equivalent of a Celsius temperature.
¢) Use these functions to write a program that prints charts showing the Fahrenheit equiv-
alents of all Celsius temperatures from 0 to 100 degrees, and the Celsius equivalents of
all Fahrenheit temperatures from 32 to 212 degrees. Print the outputs in a neat tabular
format that minimizes the number of lines of output while remaining readable.

6.27 (Find the Minimum) Write a program that inputs three double-precision, floating-point
numbers and passes them to a function that returns the smallest number.

6.28 (Perfect Numbers) An integer is said to be a perfect number if the sum of its divisors, includ-
ing 1 (but not the number itself), is equal to the number. For example, 6 is a perfect number, be-
cause 6 =1 + 2 + 3. Write a function isPerfect that determines whether parameter number is a
perfect number. Use this function in a program that determines and prints all the perfect numbers
between 1 and 1000. Print the divisors of each perfect number to confirm that the number is indeed
perfect. Challenge the power of your computer by testing numbers much larger than 1000.

6.29 (Prime Numbers) An integer is said to be prime if it’s divisible by only 1 and itself. For ex-
ample, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines whether a number is prime.

b) Use this function in a program that determines and prints all the prime numbers be-
tween 2 and 10,000. How many of these numbers do you really have to test before be-
ing sure that you’ve found all the primes?

¢) Initially, you might think that 7/2 is the upper limit for which you must test to see
whether a number is prime, but you need only go as high as the square root of 7. Why?
Rewrite the program, and run it both ways. Estimate the performance improvement.

6.30 (Reverse Digits) Write a function that takes an integer value and returns the number with
its digits reversed. For example, given the number 7631, the function should return 1367.

6.31 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the numbers. Write a function ged that returns the greatest com-
mon divisor of two integers.

6.32 (Quality Points for Numeric Grades) Write a function qualityPoints that inputs a stu-
dent’s average and returns 4 if a student’s average is 90-100, 3 if the average is 80-89, 2 if the av-
erage is 70-79, 1 if the average is 60—69 and 0 if the average is lower than 60.

6.33 (Coin Tossing) Write a program that simulates coin tossing. For each toss of the coin, the pro-
gram should print Heads or Tails. Let the program toss the coin 100 times and count the number of
times each side of the coin appears. Print the results. The program should call a separate function f11p
that takes no arguments and returns 0 for tails and 1 for heads. [Noze: If the program realistically sim-
ulates the coin tossing, then each side of the coin should appear approximately half the time.]

6.34 (Guess-the-Number Game) Write a program that plays the game of “guess the number” as
follows: Your program chooses the number to be guessed by selecting an integer at random in the
range 1 to 1000. The program then displays the following:

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

272 Chapter 6 Functions and an Introduction to Recursion

The player then types a first guess. The program responds with one of the following:

1. Excellent! You guessed the number!

w N

Would you Tike to play again (y or n)?
. Too Tow. Try again.
. Too high. Try again.

If the player’s guess is incorrect, your program should loop until the player finally gets the number
right. Your program should keep telling the player Too high or Too Tow to help the player “zero in”
on the correct answer.

6.35 (Guess-the-Number Game Modification) Modify the program of Exercise 6.34 to count the
number of guesses the player makes. If the number is 10 or fewer, print "Either you know the se-
cret or you got Tucky!" If the player guesses the number in 10 tries, then print "Ahah! You know
the secret!" If the player makes more than 10 guesses, then print "You should be able to do
better!" Why should it take no more than 10 guesses? Well, with each “good guess” the player
should be able to eliminate half of the numbers. Now show why any number from 1 to 1000 can
be guessed in 10 or fewer tries.

6.36 (Recursive Exponentiation) Write a recursive function power (base, exponent) that, when
invoked, returns

base €xponent

For example, power(3, 4) =3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. Hint: The recursion step would use the relationship

base epPonent _ e, . hace exponent — 1
and the terminating condition occurs when exponent is equal to 1, because
base' = base

6.37 (Fibonacci Series: Iterative Solution) Write a nonrecursive version of the function fibonacci

from Fig. 6.29.

6.38 (Towers of Hanoi) In this chapter, you studied functions that can be easily implemented
both recursively and iteratively. In this exercise, we present a problem whose recursive solution dem-
onstrates the elegance of recursion, and whose iterative solution may not be as apparent.

The Towers of Hanoi is one of the most famous classic problems every budding computer
scientist must grapple with. Legend has it that in a temple in the Far East, priests are attempting to
move a stack of golden disks from one diamond peg to another (Fig. 6.34). The initial stack has 64
disks threaded onto one peg and arranged from bottom to top by decreasing size. The priests are
attempting to move the stack from one peg to another under the constraints that exactly one disk is
moved at a time and at no time may a larger disk be placed above a smaller disk. Three pegs are
provided, one being used for temporarily holding disks. Supposedly, the world will end when the
priests complete their task, so there is little incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that prints the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would rapidly find our-
selves hopelessly knotted up in managing the disks. Instead, attacking this problem with recursion
in mind allows the steps to be simple. Moving 7 disks can be viewed in terms of moving only 7 —
1 disks (hence, the recursion), as follows:

a) Move 7 — 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
¢) Move the 7z — 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

Exercises 273

peg | peg 2 peg 3

[o—]
¢ D

Fig. 6.34 | Towers of Hanoi for the case with four disks.

The process ends when the last task involves moving 7 = 1 disk (i.e., the base case). This task
is accomplished by simply moving the disk, without the need for a temporary holding area. Write a
program to solve the Towers of Hanoi problem. Use a recursive function with four parameters:
a) The number of disks to be moved
b) The peg on which these disks are initially threaded
¢) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area
Display the precise instructions for moving the disks from the starting peg to the destination
peg. To move a stack of three disks from peg 1 to peg 3, the program displays the following moves:
1 — 3 (This means move one disk from peg 1 to peg 3.)
1 -2
3 =2
1 >3
2 -1
2 >3
1 -3

6.39 (Towers of Hanoi: Iterative Version) Any program that can be implemented recursively can
be implemented iteratively, although sometimes with more difficulty and less clarity. Try writing
an iterative version of the Towers of Hanoi. If you succeed, compare your iterative version with the
recursive version developed in Exercise 6.38. Investigate issues of performance, clarity and your abil-
ity to demonstrate the correctness of the programs.

6.40 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the factorial
function of Fig. 6.28 to print its local variable and recursive call parameter. For each recursive call,
display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output for-
mat that helps a person understand recursion better. You may want to add such display capabilities
to the many other recursion examples and exercises throughout the text.

6.41 (Recursive Greatest Common Divisor) The greatest common divisor of integers x and y is
the largest integer that evenly divides both x and y. Write a recursive function ged that returns the
greatest common divisor of x and y, defined recursively as follows: If y is equal to 0, then gcd(x, y)
is x; otherwise, gcd(x, y) is gcd(y, x % y), where % is the modulus operator. [Note: For this algo-
rithm, x must be larger than y.]

274 Chapter 6 Functions and an Introduction to Recursion

6.42 (Distance Between Points) Write function distance that calculates the distance between
two points (x1, y1) and (x2, 2). All numbers and return values should be of type double.

6.43 What's wrong with the following program?

| // Exercise 6.43: ex06_43.cpp

2 // What is wrong with this program?
3 #include <jostream>

4 using namespace std;

5

6 int main(Q)

7 |

8 int c = 0;

9

10 if ((¢ = cin.getQ)) !=)
11 {

12 main(Q);

13 cout << ¢c;

14 } // end if

15 } // end main

6.44 What does the following program do?

1 // Exercise 6.44: ex06_44.cpp

2 // What does this program do?

3 #include <iostream>

4 using namespace std;

5

6 int mystery(int, int); // function prototype
7

8 1int mainQ)

9 {

10 int x = 0;

11 int y = 0;

12

13 cout << H

14 cin >> x >> y;

15 cout << << mystery(x, y) << endl;
16 } // end main

17

18 // Parameter b must be a positive integer to prevent infinite recursion
19 int mystery(int a, int b)
20 {

21 if (== b) // base case

22 return a;

23 else // recursion step

24 return a + mystery(a, b -);

25 } // end function mystery

6.45 After you determine what the program of Exercise 6.44 does, modify the program to func-
tion properly after removing the restriction that the second argument be nonnegative.

6.46 (Math Library Functions) Write a program that tests as many of the math library functions
in Fig. 6.2 as you can. Exercise each of these functions by having your program print out tables of
return values for a diversity of argument values.

6.47 (Find the Error) Find the error in each of the following program segments and explain how
to correct it:

Exercises 275

a) float cube(float); // function prototype

cube(float number) // function definition
{
return number * number * number;
}
b) int randomNumber = srand();
c) float y = ;
int x;

X =Y;
cout << static_cast< float >(x) << endl;
d) double square(double number)

{
double number = 0;
return number * number;
}
e) int sum(int n)
{
if (0 ==n)
return 0;
else
return n + sum(n);
}

6.48 (Craps Game Modification) Modify the craps program of Fig. 6.11 to allow wagering.
Package as a function the portion of the program that runs one game of craps. Initialize variable
bankBalance to 1000 dollars. Prompt the player to enter a wager. Use a while loop to check that
wager is less than or equal to bankBalance and, if not, prompt the user to reenter wager until a valid
wager is entered. After a correct wager is entered, run one game of craps. If the player wins, increase
bankBalance by wager and print the new bankBalance. If the player loses, decrease bankBalance by
wager, print the new bankBalance, check on whether bankBalance has become zero and, if so, print
the message "Sorry. You busted!" As the game progresses, print various messages to create some
“chatter” such as "0Oh, you're going for broke, huh?", "Aw cmon, take a chance!" or "You're up
big. Now's the time to cash in your chips!".

6.49 (Circle Area) Write a C++ program that prompts the user for the radius of a circle, then calls
inline function circleArea to calculate the area of that circle.

6.50 (Pass-by-Value vs. Pass-by-Reference) Write a complete C++ program with the two alternate
functions specified below, each of which simply triples the variable count defined in main. Then
compare and contrast the two approaches. These two functions are
a) function tripleByValue that passes a copy of count by value, triples the copy and re-
turns the new value and
b) function tripleByReference that passes count by reference via a reference parameter
and triples the original value of count through its alias (i.e., the reference parameter).

6.51 What's the purpose of the unary scope resolution operator?

6.52 (Function Template minimum) Write a program that uses a function template called minimum
to determine the smaller of two arguments. Test the program using integer, character and floating-
point number arguments.

276 Chapter 6 Functions and an Introduction to Recursion

6.53 (Function Template maximum) Write a program that uses a function template called maximum
to determine the larger of two arguments. Test the program using integer, character and floating-
point number arguments.

6.54 (Find the Error) Determine whether the following program segments contain errors. For
each error, explain how it can be corrected. [Note: For a particular program segment, it’s possible
that no errors are present in the segment.]
a) template < class A >
int sum(int numl, int num2, int num3)

{
return numl + num2 + num3;

}

b) void printResults(int x, int y)

{
cout << << X + Yy << 5
return X + y;

}

c) template < A >
A product(A numl, A num2, A num3)
{
return numl * num2 * num3;
}
d) double cube(int);
int cube(1int);

6.55 (C++11 Random Numbers: Modified Craps Game) Modify the program of Fig. 6.11 to use
the new C++11 random-number generation features shown in Section 6.9.

6.56 (C++1I Scoped enum) Create a scoped enum named AccountType containing constants
named SAVINGS, CHECKING and INVESTMENT.

Making a Difference

As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide as suggested by the next five exercises. [Noze:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—and note the key “going green” characteristics of these devices. Look into the
Electronic Product Environmental Assessment Tool (www. epeat.net) which can help you assess the
o o . . .

greenness” of desktops, notebooks and monitors to help you decide which products to purchase.]

6.57 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn
multiplication. Use the rand function to produce two positive one-digit integers. The program
should then prompt the user with a question, such as

How much 1is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate function should be used to generate each new ques-
tion. This function should be called once when the application begins execution and each time the
user answers the question correctly.

www.laptop.org
www.epeat.net

Making a Difference 277

6.58 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 6.57 so that various comments are displayed for
each answer as follows:
Possible responses to a correct answer:
Very good!
Excellent!

Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.
Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

6.59 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated
computer-assisted instruction systems monitor the student’s performance over a period of time. The
decision to begin a new topic is often based on the student’s success with previous topics. Modify
the program of Exercise 6.58 to count the number of correct and incorrect responses typed by the
student. After the student types 10 answers, your program should calculate the percentage that are
correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.",
then reset the program so another student can try it. If the percentage is 75% or higher, display
"Congratulations, you are ready to go to the next level!", then reset the program so another
student can try it.

6.60 (Computer-Assisted Instruction: Difficulty Levels) Exercises 6.57-6.59 developed a com-
puter-assisted instruction program to help teach an elementary school student multiplication. Mod-
ify the program to allow the user to enter a difficulty level. At a difficulty level of 1, the program
should use only single-digit numbers in the problems; at a difficulty level of 2, numbers as large as
two digits, and so on.

6.61 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of
Exercise 6.60 to allow the user to pick a type of arithmetic problem to study. An option of 1 means
addition problems only, 2 means subtraction problems only, 3 means multiplication problems only,
4 means division problems only and 5 means a random mixture of all these types.

Now go, write it
before them in a table,
and note it in a book.
—Isaiah 30:8

Begin at the beginning, ... and
go on till you come to the end:
then stop.

—Lewis Carroll

1o go beyond is as
wrong as to fall short.
—Confucius

Objectives
In this chapter you'll:

m Use C++ Standard Library
class template array—a
fixed-size collection of
related data items.

= Use arrays to store, sort
and search lists and tables of
values.

m Declare arrays, initialize
arrays and refer to the
elements of arrays.

m Use the range-based for
statement.

m Pass arrays to functions.

m Declare and manipulate
multidimensional arrays.

m Use C++ Standard Library
class template vector—a
variable-size collection of
related data items.

Class Templates array and
vector; Catching
Exceptions

7.1 Introduction 279

7.1 Introduction 74.7 Using arrays to Summarize Survey
7.2 Results
-4 arrays 748 Static Local arrays and Automatic
7.3 Declaring arrays Local arrays
7.4 Examples Using arrays 7.5 Range-Based for Statement
74.1 Declaringan array and Usinga Loop 7.6 Case Study: Class GradeBook Using
to Initialize the ar‘r‘ay’s Elements an array to Store Grades

742 Initializing an array in a Declaration
with an Initializer List

743 Specifying an array’s Size with a 7.8 Multidimensional arrays

Constant Variable and Setting array . .
N 7.9 Case Study: Class GradeBook Using

744 Summing the Elements of an array a Two-Dimensional array
745 Using Bar Charts to Display array 7.10 Introduction to C++ Standard Library

Data Graphically
74.6 Using the Elements of an array as Class Template vector

Counters 7.11 Wrap-Up

7.7 Sorting and Searching arrays

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Recursion Exercises | Making a Difference

7.1 Introduction

This chapter introduces the topic of data structures—collections of related data items. We
discuss arrays, which are fixed-size collections consisting of data items of the same type, and
vectors which are collections (also of data items of the same type) that can grow and shrink
dynamically at execution time. Both array and vector are C++ standard library class tem-
plates. To use them, you must include the <array> and <vector> headers respectively.

After discussing how arrays are declared, created and initialized, we present examples
that demonstrate several common array manipulations. We show how to search arrays to
find particular elements and sorz arrays to put their data in order.

We enhance the GradeBook class by using both one- and two-dimensional arrays to
maintain a set of grades in memory and analyze the grades from multiple exams. We intro-
duce the exception-handling mechanism and use it to allow a program to continue executing
when the program attempts to access an array or vector element that does not exist.

7.2 arrays

An array is a contiguous group of memory locations that all have the same type. To refer
to a particular location or element in the array, we specify the name of the array and the
position number of the particular element in the array.

Figure 7.1 shows an integer array called ¢ that contains 12 elements. You refer to any
one of these elements by giving the array name followed by the particular element’s posi-
tion number in square brackets ([1). The position number is more formally called a sub-
script or index (this number specifies the number of elements from the beginning of the
array). The first element has subscript 0 (zero) and is sometimes called the zeroth ele-
ment. Thus, the elements of array ¢ are c[0] (pronounced “c sub zero”), c[1], c[2] and
so on. The highest subscript in array c is 11, which is 1 less than the number of elements
in the array (12). array names follow the same conventions as other variable names.

280 Chapter 7 Class Templates array and vector; Catching Exceptions

Name of the array is c

Position number of the c[
element within the array <[
cl

cl

Name of an individual —— c[
array element ol
cl

cl

cl

cl

c[10

c[11

Value

© o N O U1 A W N R O=-w

T T T [V TN T T VO [S [

Fig. 7.1 | array of 12 elements.

A subscript must be an integer or integer expression (using any integral type). If a pro-
gram uses an expression as a subscript, then the program evaluates the expression to deter-
mine the subscript. For example, if we assume that variable a is equal to 5 and that variable
b is equal to 6, then the statement

cla+b] += 2;

adds 2 to array element c[11]. A subscripted array name is an /fva/ue—it can be used on
the left side of an assignment, just as non-array variable names can.

Let’s examine array c in Fig. 7.1 more closely. The name of the entire array is c.
Each array knows its own size, which can be determined by calling its size member func-
tion as in c.size(). Its 12 elements are referred to as c[0] to c[11]. The value of c[0] is
-45, the value of ¢[7] is 62 and the value of c[11] is 78. To print the sum of the values
contained in the first three elements of array c, we’d write

cout << c[O] +c[L] +c[2] << endl;
To divide the value of c[6] by 2 and assign the result to the variable x, we would write

x=c[61/ 2;

Common Programming Error 7.1
_ Note the difference between the “seventh element of the array” and “array element 7.” Sub-
I £ scripts begin at 0, so the “seventh element of the array” has a subscript of 6, while “array
element 77 has a subscript of 7 and is actually the eighth element of the array. This distinc-
tion is a frequent source of off-by-one errors. To avoid such errors, we refer to specific array
elements explicitly by their array name and subscript number (e.g., c[6] or c[7]).

The brackets that enclose a subscript are actually an operator that has the same prece-
dence as parentheses. Figure 7.2 shows the precedence and associativity of the operators
introduced so far. The operators are shown top to bottom in decreasing order of prece-
dence with their associativity and type.

7.3 Declaring arrays 281

Operators Associativity Type

0O left to right primary
[See caution in Fig. 2.10 regard-
ing grouping parentheses.|

O [1 ++ -- static_cast<type>(operand) left to right postfix

= right to left unary (prefix)

/% left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

= |I= left to right equality

&& left to right logical AND

I left to right logical OR

& right to left conditional

= 4= = *= /= %= right to left assignment
left to right comma

Fig. 7.2 | Precedence and associativity of the operators introduced to this point.

7.3 Declaring arrays

arrays occupy space in memory. To specify the type of the elements and the number of
elements required by an array use a declaration of the form:

array< e, arraySize > arrayName;

The notation <gype, arraySize> indicates that array is a class template. The compiler re-
serves the appropriate amount of memory based on the #ype of the elements and the array-
Size. (Recall that a declaration which reserves memory is more properly known as a
definition.) The arraySize must be an unsigned integer. To tell the compiler to reserve 12
elements for integer array c, use the declaration

array< int, 12 > c; // c 1is an array of 12 int values

arrays can be declared to contain values of most data types. For example, an array of type
string can be used to store character strings.

7.4 Examples Using arrays

The following examples demonstrate how to declare, initialize and manipulate arrays.

7.4.1 Declaring an array and Using a Loop to Initialize the array’s
Elements

The program in Fig. 7.3 declares five-element integer array n (line 10). Line 5 includes
the <array> header, which contains the definition of class template array. Lines 13-14

282 Chapter 7 Class Templates array and vector; Catching Exceptions

use a for statement to initialize the array elements to zeros. Like other automatic vari-
ables, automatic arrays are not implicitly initialized to zero although static arrays are.
The first output statement (line 16) displays the column headings for the columns printed
in the subsequent for statement (lines 19-20), which prints the array in tabular format.
Remember that setw specifies the field width in which only the next value is to be output.

1 // Fig. 7.3: fig07_03.cpp

2 // Initializing an array's elements to zeros and printing the array.
3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 using namespace std;

7

8 int mainQ

9 {

10 array< int, > n; // n is an array of 5 int values

11

12 // initialize elements of array n to 0

13 for (size_t i = 0; i < n.size(Q); ++i)

14 nf i] =0; // set element at location i to O

15

16 cout << << setw() << << endl;

17

18 // output each array element's value

19 for (size_t j = 0; j < n.sizeQ); ++j)
20 cout << setw() << j << setw() << n[j] << endl;

21 } // end main

ETlement Value

A WN R
[eNeNoNoNo]

Fig. 7.3 | Initializing an array’s elements to zeros and printing the array.

In this program, the control variables i (line 13) and j (line 19) that specify array
subscripts are declared to be of type size_t. According to the C++ standard size_t rep-
resents an unsigned integral type. This type is recommended for any variable that repre-
sents an array’s size or an array’s subscripts. Type size_t is defined in the std namespace
and is in header <cstddef>, which is included by various other headers. If you attempt to
compile a program that uses type size_t and receive errors indicating that it’s not defined,
simply include <cstddef> in your program.

7.4.2 Initializing an array in a Declaration with an Initializer List

The elements of an array also can be initialized in the array declaration by following the
array name with an equals sign and a brace-delimited comma-separated list of initializers.
The program in Fig. 7.4 uses an initializer list to initialize an integer array with five values
(line 11) and prints the array in tabular format (lines 13-17).

7.4 Examples Using arrays 283

1 // Fig. 7.4: fig07_04.cpp

2 // Initializing an array in a declaration.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 using namespace std;

7

8 dint mainQ

9 {
10 // use Tist initializer to initialize array n
11 array< int, >n = { s y s s it
12
13 cout << << setw() << << endl;
14
15 // output each array element's value
16 for (size_t i = 0; i < n.size(Q); ++i)
17 cout << setw() << i << setw() << n[i] << endl;

18 } // end main

Element Value

DwWwNR O
(o)}
~

Fig. 7.4 | Initializing an array in a declaration.

If there are fewer initalizers than array elements, the remaining array elements are
initialized to zero. For example, the elements of array n in Fig. 7.3 could have been ini-
tialized to zero with the declaration

array< 1int, >n = {}; // initialize elements of array n to O

which initializes the elements to zero, because there are fewer initializers (none in this case)
than array elements. This technique can be used only in the array’s declaration, whereas
the initialization technique shown in Fig. 7.3 can be used repeatedly during program exe-
cution to “reinitialize” an array’s elements.

If the array size and an initializer list are specified in an array declaration, the
number of initializers must be less than or equal to the array size. The array declaration

array< int, 5 > n = { 32, , , 5 . i

causes a compilation error, because there are six initializers and only five array elements.

7.4.3 Specifying an array’s Size with a Constant Variable and Setting
array Elements with Calculations

Figure 7.5 sets the elements of a 5-element array s to the even integers 2, 4, 6, 8 and 10 (lines
15-16) and prints the array in tabular format (lines 18-22). These numbers are generated
(line 16) by multiplying each successive value of the loop counter by 2 and adding 2.

Line 11 uses the const qualifier to declare a constant variable arraySize with the value
5. A constant variable that’s used to specify array’s size must be initialized with a constant

284 Chapter 7 Class Templates array and vector; Catching Exceptions

1 // Fig. 7.5: fig07_05.cpp
2 // Set array s to the even integers from 2 to 10.
3 #include <iostream>
4 #include <iomanip>
5 #include <array>
6 using namespace std;
7
8 1int main(Q)
9 {
10 // constant variable can be used to specify array size
11 const size_ t arraySize = 5; // must initialize in declaration
12
13 array< int, arraySize > s; // array s has 5 elements
14
15 for (size_t i = 0; i < s.size(); ++i) // set the values
16 sfil]l=2+2%*1;
17
18 cout << "Element” << setw(13) << "Value" << endl;
19
20 // output contents of array s in tabular format
21 for (size_t j = 0; j < s.size(Q); ++j)
22 cout << setw(7) << j << setw(13) << s[j] << endl;
23 } // end main
Element Value
0 2
1 4
2 6
3 8
4 10

Fig. 7.5 | Setarray s to the even integers from 2 to 10.

expression when it’s declared and cannor be modified thereafter (as shown in Fig. 7.6 and
Fig. 7.7). Constant variables are also called named constants or read-only variables.

5 Common Programming Error 7.2

, - Not initializing a constant variable when it’s declared is a compilation error.
e &

Assigning a value to a constant variable in an executable statement is a compilation error.

g? Common Programming Error 7.3
' \
e £

N VD WN =

// Fig. 7.6: fig07_06.cpp

// Using a properly initialized constant variable.
#include <iostream>

using namespace std;

int mainQ)

{

Fig. 7.6 | Using a properly initialized constant variable. (Part | of 2.)

7.4 Examples Using arrays

285

8 const int x = 7; // initialized constant variable
9
10 cout << << X << endl;

Il } // end main

The value of constant variable x is: 7

Fig. 7.6 | Using a properly initialized constant variable. (Part 2 of 2.)

// Fig. 7.7: fig07_07.cpp
// A const variable must be initialized.

int main()

{

const int x; // Error: x must be initialized

X = 7; // Error: cannot modify a const variable
} // end main

VoO~NONUND WN -

Microsoft Visual C++ compiler error message:

error C2734: 'x' : const object must be initialized if not extern
error C3892: 'x' : you cannot assign to a variable that is const

GNU C++ compiler error message:

fi9g07_07.cpp:6:14: error: uninitialized const ‘x’ [-fpermissive]
fi9g07_07.cpp:8:8: error: assignment of read-only variable ‘x’

LLVM compiler error message:

Default initialization of an object of const type 'const int'

Fig. 7.7 | A const variable must be initialized.

In Fig. 7.7, the compilation error produced by Microsoft Visual C++ refers to the int
variable x as a “const object.” The C++ standard defines an “object” as any “region of
storage.” Like class objects, fundamental-type variables also occupy space in memory, so

they’re often referred to as “objects.”

Constant variables can be placed anywhere a constant expression is expected. In

Fig. 7.5, constant variable arraySize specifies the size of array s in line 13.

Defining the size of an array as a constant variable instead of a literal constant makes

= programs clearer. This technique eliminates so-called magic numbers—numeric values
that are not explained. Using a constant variable allows you to provide a name for a literal
constant and can help explain the purpose of the value in the program.

}_ Good Programming Practice 7.1

286 Chapter 7 Class Templates array and vector; Catching Exceptions

7.4.4 Summing the Elements of an array

Often, the elements of an array represent a series of values to be used in a calculation. For
example, if the elements of an array represent exam grades, a professor may wish to total
the elements of the array and use that sum to calculate the class average for the exam.

The program in Fig. 7.8 sums the values contained in the four-element integer array
a. The program declares, creates and initializes the array in line 10. The for statement
(lines 14-15) performs the calculations. The values being supplied as initializers for array
a also could be read into the program from the user at the keyboard, or from a file on disk
(see Chapter 14, File Processing). For example, the for statement

for (size_t j = 0; j < a.sizeQ); ++j)
cin >> al[j 1;

reads one value at a time from the keyboard and stores the value in element a[j].

1 // Fig. 7.8: fig07_08.cpp

2 // Compute the sum of the elements of an array.

3 #include <iostream>

4 #include <array>

5 using namespace std;

6

7 dint main(Q)

8 {

9 const size_t arraySize = 4; // specifies size of array
10 array< int, arraySize > a = { s s y };

11 int total = 0;

12

13 // sum contents of array a

14 for (size_t i = 0; i < a.size(Q); ++i)

15 total += a[i];

16

17 cout << << total << endl;

18 } // end main

Total of array elements: 100

Fig. 7.8 | Computing the sum of the elements of an array.

7.4.5 Using Bar Charts to Display array Data Graphically

Many programs present data to users in a graphical manner. For example, numeric values
are often displayed as bars in a bar chart. In such a chart, longer bars represent proportion-
ally larger numeric values. One simple way to display numeric data graphically is with a
bar chart that shows each numeric value as a bar of asterisks (¥).

Professors often like to examine grade distributions on an exam. A professor might
graph the number of grades in each of several categories to visualize the grade distribution.
Suppose the grades were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87. There was one grade of
100, two grades in the 90s, four grades in the 80s, two grades in the 70s, one grade in the
60s and no grades below 60. Our next program (Fig. 7.9) stores this data in an array of 11
elements, each corresponding to a grade category. For example, n[0] indicates the number
of grades in the range 0-9, n[7] indicates the number of grades in the range 70-79 and

7.4 Examples Using arrays 287

1 // Fig. 7.9: fig07_09.cpp

2 // Bar chart printing program.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 using namespace std;

7

8 dint mainQ

9 {

10 const size_t arraySize = 11;

11 array< unsigned int, arraySize > n =

12 {o0,0,0,0,0,0,1, 2, 4, 2, 11};

13

14 cout << "Grade distribution:"” << endl;

15

16 // for each element of array n, output a bar of the chart
17 for (size_t i = 0; i < n.size(Q); ++i)

18 {

19 // output bar Tabels ("0-9:", ..., "90-99:", "100:")
20 if (0 ==1)
21 cout << " 0-9: "y
22 else if (10 == 1)
23 cout << " 100: "
24 else
25 cout << i * 10 << """ << (1 *10) + 9 << "2
26
27 // print bar of asterisks
28 for (unsigned int stars = 0; stars < n[i]; ++stars)
29 cout << '*';
30
31 cout << endl; // start a new line of output
32 } // end outer for

33 } // end main

Grade distribution:
0-9:

10-19:

20-29:

30-39:

40-49:

50-59:

60-69: *

70-79: **

80-89:

90-99: *
100: *

Fig. 7.9 | Bar chart printing program.

n[10] indicates the number of grades of 100. The GradeBook versions in Figs. 7.15-7.16
and Figs. 7.22-7.23 contain code that calculates these grade frequencies based on a set of
grades. For now, we manually create the array by looking at the set of grades.

The program reads the numbers from the array and graphs the information as a bar
chart, displaying each grade range followed by a bar of asterisks indicating the number of

3

288 Chapter 7 Class Templates array and vector; Catching Exceptions

grades in that range. To label each bar, lines 20-25 output a grade range (e.g., "70-79: ")
based on the current value of counter variable i. The nested for statement (lines 28—29)
outputs the bars. Note the loop-continuation condition in line 28 (stars <n[i1). Each
time the program reaches the inner for, the loop counts from 0 up to n[i], thus using a
value in array n to determine the number of asterisks to display. In this example, n[0]—
n[5] contain zeros because no students received a grade below 60. Thus, the program dis-
plays no asterisks next to the first six grade ranges.

7.4.6 Using the Elements of an array as Counters

Sometimes, programs use counter variables to summarize data, such as the results of a sur-
vey. In Fig. 6.9, we used separate counters in our die-rolling program to track the number
of occurrences of each side of a die as the program rolled the die 6,000,000 times. An array
version of this program is shown in Fig. 7.10. This version also uses the new C++11 ran-
dom-number generation capabilities that were introduced in Section 6.9.

Figure 7.10 uses the array frequency (line 18) to count the occurrences of each side
of the die. The single statement in line 22 of this program replaces the switch statement in lines
23-45 of Fig. 6.9. Line 22 uses a random value to determine which frequency element to

1 // Fig. 7.10: fig07_10.cpp

2 // Die-rolling program using an array instead of switch.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 #include <random>

7 #include <ctime>

8 using namespace std;

9

10 1int mainQ)

1 {

12 // use the default random-number generation engine to

13 // produce uniformly distributed pseudorandom int values from 1 to 6
14 default_random_engine engine(static_cast< unsigned int >(time(0)));
15 uniform_int_distribution< unsigned int > randomInt(1,)

16

17 const size_t arraySize = 7; // ignore element zero

18 array< unsigned int, arraySize > frequency = {}; // initialize to Os
19
20 // roll die 6,000,000 times; use die value as frequency index
21 for (unsigned int roll = 1; roll <= ; ++roll)
22 ++frequency[randomInt(engine) 1;
23
24 cout << << setw() << << endl;
25
26 // output each array element's value
27 for (size_t face = 1; face < frequency.size(); ++face)
28 cout << setw() << face << setw() << frequency[face]
29 << endl;

30 } // end main

Fig. 7.10 | Die-rolling program using an array instead of switch. (Part | of 2.)

7.4 Examples Using arrays 289

Face Frequency
1 1000167
2 1000149
3 1000152
4 998748
5 999626
6 1001158

Fig. 7.10 | Die-rolling program using an array instead of switch. (Part 2 of 2.)

increment during each iteration of the loop. The calculation in line 22 produces a random
subscript from 1 to 6, so array frequency must be large enough to store six counters. How-
ever, we use a seven-element array in which we ignore frequency [0]—it’s clearer to have
the die face value 1 increment frequency[1] than frequency[0]. Thus, each face value is
used directly as a subscript for array frequency. We also replace lines 4954 of Fig. 6.9 by
looping through array frequency to output the results (Fig. 7.10, lines 27-29).

7.4.7 Using arrays to Summarize Survey Results

Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the following problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being ‘awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

This is a popular type of array-processing application (Fig. 7.11). We wish to summarize
the number of responses of each type (that is, 1-5). The array responses (lines 15-16)
is a 20-clement integer array of the students’ responses to the survey. The array respons-
es is declared const, as its values do not (and should not) change. We use a six-element
array frequency (line 19) to count the number of occurrences of each response. Each el-
ement of the array is used as a counter for one of the survey responses and is initialized to
zero. As in Fig. 7.10, we ignore frequency[0].

1 // Fig. 7.11: fig07_11.cpp

2 // Poll analysis program.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 using namespace std;

7

8 int mainQ

9 {

10 // define array sizes

11 const size_t responseSize = ; // size of array responses
12 const size_t frequencySize = 6; // size of array frequency
13

14 // place survey responses in array responses

15 const array< unsigned int, responseSize > responses =

16 {1, 2,5, 4,3,5,2,1, 3,1, 4,3, 3,3, 2,3, 3, 2,251}

Fig. 7.11 | Poll analysis program. (Part | of 2.)

290 Chapter 7 Class Templates array and vector; Catching Exceptions

17

18 // initialize frequency counters to O

19 array< unsigned int, frequencySize > frequency = {};

20

21 // for each answer, select responses element and use that value
22 // as frequency subscript to determine element to increment

23 for (size_t answer = 0; answer < responses.size(); ++answer)
24 ++frequency[responses[answer] 1;

25

26 cout << << setw() << << endl;

27

28 // output each array element's value

29 for (size_t rating = 1; rating < frequency.size(); ++rating)
30 cout << setw() << rating << setw() << frequency[rating]
31 << endl;

32 } // end main

Rating Frequency

vih wWwhN R
WN NNV Ww

Fig. 7.11 | Poll analysis program. (Part 2 of 2.)

The first for statement (lines 23-24) takes the responses one at a time from the array
responses and increments one of the five counters in the frequency array (fre-
quency[1] to frequency[5]). The key statement in the loop is line 24, which increments
the appropriate frequency counter, depending on the value of responses[answer].

Let’s consider several iterations of the for loop. When control variable answer is 0,
the value of responses[answer] is the value of responses[0] (i.e., 1 in line 16), so the
program interprets ++frequency[responses[answer]] as

++frequency[1]

which increments the value in array element 1. To evaluate the expression, start with the
value in the innermost set of square brackets (answer). Once you know answer’s value
(which is the value of the loop control variable in line 23), plug it into the expression and
evaluate the expression in the next outer set of square brackets (i.e., responses[answer],
which is a value selected from the responses array in lines 15-16). Then use the resulting
value as the subscript for the frequency array to specify which counter to increment.

When answer is 1, responses[answer] is the value of responses[1], which is 2, so
the program interprets ++frequency[responses[answer]] as

++frequency[]

which increments array element 2.
When answer is 2, responses[answer] is the value of responses[2], which is 5, so
the program interprets ++frequency[responses[answer]] as

++frequency[]

7.4 Examples Using arrays 291

which increments array element 5, and so on. Regardless of the number of responses pro-
cessed in the survey, the program requires o7ly a six-element array (ignoring element zero)
to summarize the results, because all the response values are between 1 and 5 and the sub-
script values for an six-element array are 0 through 5.

Bounds Checking for array Subscripts

If the data in responses contained an invalid value, such as 13, the program would have
attempted to add 1 to frequency[13], which is ousside the bounds of the array. When you
use the [] operator to access an array element, C++ provides no automatic array bounds check-
ing to prevent you from referring to an element that does not exist. Thus, an executing program
can “walk off” either end of an array without warning. In Section 7.10, we demonstrate
the class template vector’s at function, which performs bounds checking for you. Class
template array also has an at function.

It’s important to ensure that every subscript you use to access an array element is
within the array’s bounds—that is, greater than or equal to 0 and less than the number
of array elements.

Allowing programs to read from or write to array elements outside the bounds of
arrays are common security flaws. Reading from out-of-bounds array elements can cause a
program to crash or even appear to execute correctly while using bad data. Writing to an out-
of-bounds element (known as a buffer overflow) can corrupt a program’s data in memory,
crash a program and allow attackers to exploit the system and execute their own code. For
more information on buffer overflows, see en.wikipedia.org/wiki/Buffer_overflow.

2 Common Programming Error 7.4

| e - >
'z Referring to an element outside the array bounds is an execution-time logic error. It isn’t
a syntax error.

<z Error-Prevention Tip 7.1
g' | When looping through an array, the index should never go below 0 and should always
. be less than the rotal number of array elements (one less than the size of the array). Make
sure that the loop-termination condition prevents accessing elements outside this range. In
Chapters 15—16, you'll learn about iterators, which can help prevent accessing elements
outside an array’s (or other container’s) bounds.

7.4.8 Static Local arrays and Automatic Local arrays

Chapter 6 discussed the storage-class specifier static. A static local variable in a func-
tion definition exists for the program’s duration but is visible o7/y in the function’s body.

ra3za . Performance Tip 7.1

n ﬁ- We can apply static to a local array declaration so that it’s not created and initialized

' each time the program calls the function and is not destroyed each time the function ter-
minates. This can improve performance, especially when using large arrays.

A program initializes static local arrays when their declarations are first encoun-
tered. If a static array is not initialized explicitly by you, each element of that array is
initialized to zero by the compiler when the array is created. Recall that C++ does 7oz pet-
form such default initialization for automatic variables.

292 Chapter 7 Class Templates array and vector; Catching Exceptions

Figure 7.12 demonstrates function staticArrayInit (lines 24-40) with a static
local array (line 27) and function automaticArrayInit (lines 43—59) with an automatic

local array (line 46).

1 // Fig. 7.12: fig07_12.cpp

2 // static array initialization and automatic array initialization.
3 #include <iostream>

4 #include <array>

5 using namespace std;

6

7 void staticArrayInit(); // function prototype

8 void automaticArrayInit(); // function prototype
9 const size_t arraySize = 3;

10

Il int mainQ)

12 {

13 cout << "First call to each function:\n";

14 staticArrayInit(Q);

15 automaticArrayInit();

16

17 cout << "\n\nSecond call to each function:\n";
18 staticArrayInit();

19 automaticArrayInit(Q);
20 cout << endl;
21 } // end main
22

23 // function to demonstrate a static local array
24 void staticArrayInit(void)

25 {

26 // initializes elements to 0 first time function is called
27 static array< 1int, arraySize > arrayl; // static local array
28

29 cout << "\nValues on entering staticArrayInit:\n";

30

31 // output contents of arrayl

32 for (size_t i = 0; i < arrayl.size(Q); ++i)

33 cout << "arrayl[" << i << "] = " << arrayl[i] << " "
34

35 cout << "\nValues on exiting staticArrayInit:\n";

36

37 // modify and output contents of arrayl

38 for (size_t j = 0; j < arrayl.size(Q); ++j)

39 cout << "arrayl[" << j << "] = " << Carrayl[j] +=5) << " "
40 } // end function staticArraylnit

41

42 // function to demonstrate an automatic local array
43 void automaticArrayInit(void)

44 {

45 // initializes elements each time function is called

46 array< int, arraySize > array2 = { 1, 2, 3 }; // automatic Tocal array
47

48 cout << "\n\nValues on entering automaticArrayInit:\n";

Fig. 7.12 | static array initialization and automatic array initialization. (Part | of 2.)

7.5 Range-Based for Statement 293

49

50 // output contents of array?2

51 for (size_t i = 0; i < array2.size(Q); ++i)

52 cout << << i << << array2[i] << ;

53

54 cout << ;

55

56 // modify and output contents of array2

57 for (size_t j = 0; j < array2.size(Q); ++j)

58 cout << << j << << (array2[j 1 +=) << ;

59 1} // end function automaticArrayInit

First call to each function:

Values on entering staticArrayInit:

arrayl[0] = 0 arrayl[l] = 0 arrayl[2] =0
Values on exiting staticArrayInit:
arrayl[0] = 5 arrayl[l] = 5 arrayl[2] =5
Values on entering automaticArrayInit:
array2[0] = 1 array2[l] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1l] = 7 array2[2] = 8
Second call to each function:

Values on entering staticArrayInit:
arrayl[0] = 5 arrayl[l] = 5 arrayl[2] =5

Values on exiting staticArrayInit:
arrayl[0] = 10 arrayl[l] = 10 arrayl[2] = 10

Values on entering automaticArrayInit:

array2[0] = 1 array2[1l] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[l] = 7 array2[2] = 8

Fig. 7.12 | static array initialization and automatic array initialization. (Part 2 of 2.)

Function staticArrayInit is called twice (lines 14 and 18). The static local arrayl
is initialized to zero by the compiler the first time the function is called. The function prints
the array, adds 5 to each element and prints the array again. The second time the function
is called, the static array contains the modified values stored during the first function call.

Function automaticArrayInit also is called twice (lines 15 and 19). Automatic local
array?2’s elements are initialized (line 46) with the values 1, 2 and 3. The function prints the
array, adds 5 to each element and prints the array again. The second time the function is
called, the array elements are reinitialized to 1, 2 and 3. The array has automatic storage
duration, so the array is recreated and reinitialized during each call to automaticArrayInit.

7.5 Range-Based for Statement

As we've shown, i’s common to process @/l the elements of an array. The new C++11 m
range-based for statement allows you to do this withour using a counter, thus avoiding the =~ 2
possibility of “stepping outside” the array and eliminating the need for you to implement

your own bounds checking.

294 Chapter 7 Class Templates array and vector; Catching Exceptions

z<» Error-Prevention Tip 7.2
" When processing all elements of an array, if you don’t need access to an array element’s
subscript, use the range-based for statement.

[~

The syntax of a range-based for statement is:

for (rangeVariableDeclaration : expression)
Statement

where rangeVariableDeclaration has a type and an identifier (e.g., int item), and expression
is the array through which to iterate. The type in the rangeVariableDeclaration must be
consistent with the type of the array’s elements. The identifier represents successive array
element values on successive iterations of the loop. You can use the range-based for state-
ment with most of the C++ Standard Library’s prebuilt data structures (commonly called
containers), including classes array and vector.

Figure 7.13 uses the range-based for to display an array’s contents (lines 13-14 and
22-23) and to multiply each of the array’s element values by 2 (lines 17-18).

1 // Fig. 7.13: fig07_13.cpp

2 // Using range-based for to multiply an array's elements by 2.
3 #include <iostream>

4 #include <array>

5 using namespace std;

6

7 dint mainQ)

8 {

9 array< int, > ditems = { 1, 2, 3, 4, };
10

11 // display items before modification

12 cout <<)
13 for (int item : items)

14 cout << item << ;

15

16 // multiply the elements of items by 2
17 for (int &itemRef : items)

18 itemRef *= 2;

19
20 // display items after modification
21 cout <<)
22 for (int item : items)
23 cout << item << ;
24
25 cout << endl;

26 } // end main

items before modification: 1 2 3 4 5
items after modification: 2 4 6 8 10

Fig. 7.13 | Using range-based for to multiply an array's elements by 2.

Using the Range-Based for to Display an array’s Contents
The range-based for statement simplifies the code for iterating through an array. Line 13
can be read as “for each iteration, assign the next element of i tems to int variable item, then

7.6 Case Study: Class GradeBook Using an array to Store Grades 295

execute the following statement.” Thus, for each iteration, identifier item represents one el-
ement in items. Lines 1314 are equivalent to the following counter-controlled repetition:

for (int counter = 0; counter < items.size(); ++counter)
cout << items[counter] << ;

Using the Range-Based for to Modify an array’s Contents

Lines 17-18 use a range-based for statement to multiply each element of items by 2. In
line 17, the rangeVariableDeclaration indicates that itemRef is an int reference (&). Recall
that a reference is an alias for another variable in memory—in this case, one of the array’s
elements. We use an int reference because items contains int values and we want to mod-
7fy each element’s value—Dbecause itemRef is declared as a reference, any change you make
to itemRef changes the corresponding element value in the array.

Using an Element’s Subscript

The range-based for statement can be used in place of the counter-controlled for state-
ment whenever code looping through an array does o require access to the element’s
subscript. For example, totaling the integers in an array (as in Fig. 7.8) requires access
only to the element values—the elements’ subscripts are irrelevant. However, if a program
must use subscripts for some reason other than simply to loop through an array (e.g., to
print a subscript number next to each array element value, as in the examples early in this
chapter), you should use the counter-controlled for statement.

7.6 Case Study: Class GradeBook Using an array to
Store Grades

This section further evolves class GradeBook, introduced in Chapter 3 and expanded in
Chapters 4—6. Recall that this class represents a grade book used by a professor to store and
analyze student grades. Previous versions of the class process grades entered by the user, but
do nor maintain the individual grade values in the class’s data members. Thus, repeat calcu-
lations require the user to reenter the grades. One way to solve this problem would be to
store each grade entered in an individual data member of the class. For example, we could
create data members gradel, grade?, ..., gradel0 in class GradeBook to store 10 student
grades. However, the code to total the grades and determine the class average would be
cumbersome. In this section, we solve this problem by storing grades in an array.

Storing Student Grades in an array in Class GradeBook

Figure 7.14 shows the output that summarizes the 10 grades we store in an object of the
next version of class GradeBook (Figs. 7.15-7.16), which uses an array of integers to store
the grades of 10 students for a single exam. This eliminates the need to repeatedly input
the same set of grades. array grades is declared as a data member in line 28 of Fig. 7.15—
therefore, each GradeBook object maintains its own set of grades.

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 7.14 | Output of the GradeBook example that stores grades in an array. (Part | of 2.)

296 Chapter 7 Class Templates array and vector; Catching Exceptions

The grades are:

Student 1: 87
Student 2 68
Student 3 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7 85
Student 8 91
Student 9 76

Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:

0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80_89: Fededd
90-99: **

100: *

Fig. 7.14 | Output of the GradeBook example that stores grades in an array. (Part 2 of 2.)

1 // Fig. 7.15: GradeBook.h

2 // Definition of class GradeBook that uses an array to store test grades.
3 // Member functions are defined in GradeBook.cpp

4 #include <string>

5 #include <array>

6

7 // GradeBook class definition

8 class GradeBook

9 {

10 public:

11 // constant -- number of students who took the test

12 static const size_t students = 10; // note public data

13

14 // constructor initializes course name and array of grades

15 GradeBook(const std::string &, const std::array< int, students > &);
16

17 void setCourseName(const std::string &); // set the course name
18 string getCourseName() const; // retrieve the course name

19 void displayMessage() const; // display a welcome message
20 void processGrades() const; // perform operations on the grade data
21 int getMinimum() const; // find the minimum grade for the test
22 int getMaximum() const; // find the maximum grade for the test

Fig. 7.15 | Definition of class GradeBook that uses an array to store test grades. (Part | of 2.)

7.6 Case Study: Class GradeBook Using an array to Store Grades 297

23 double getAverage() const; // determine the average grade for the test
24 void outputBarChart() const; // output bar chart of grade distribution
25 void outputGrades() const; // output the contents of the grades array
26 private:

27 std::string courseName; // course name for this grade book

28 std::array< int, students > grades; // array of student grades

29 }; // end class GradeBook

7.15 | Definition of class GradeBook that uses an array to store test grades. (Part 2 of 2.)

T
o

1 // Fig. 7.16: GradeBook.cpp

2 // GradeBook class member functions manipulating

3 // an array of grades.

4 #include <iostream>

5 #include <iomanip>

6 #include "GradeBook.h" // GradeBook class definition
7 using namespace std;

8

9 // constructor initializes courseName and grades array
10 GradeBook::GradeBook(const string &name,

11 const array< int, students > &gradesArray)

12 : courseName(name), grades(gradesArray)

13 {

14 } // end GradeBook constructor

15

16 // function to set the course name
17 void GradeBook: :setCourseName(const string &name)

18 {

19 courseName = name; // store the course name
20 1} // end function setCourseName

21

22 // function to retrieve the course name
23 string GradeBook::getCourseName() const

24 {

25 return courseName;

26 1} // end function getCourseName
27

28 // display a welcome message to the GradeBook user
29 void GradeBook: :displayMessage() const

30 {

31 // this statement calls getCourseName to get the

32 // name of the course this GradeBook represents

33 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
34 << endl;

35 1} // end function displayMessage

36

37 // perform various operations on the data
38 void GradeBook: :processGrades() const

39 {

40 // output grades array
41 outputGrades();

42

Fig. 7.16 | GradeBook class member functions manipulating an array of grades. (Part | of 3.)

298 Chapter 7 Class Templates array and vector; Catching Exceptions

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95

// call function getAverage to calculate the average grade
cout << setprecision(2) << fixed;
cout << "\nClass average is " << getAverage() << endl;

// call functions getMinimum and getMaximum
cout << "Lowest grade is " << getMinimum() << "\nHighest grade 1is
<< getMaximum() << endl;

// call function outputBarChart to print grade distribution chart
outputBarChart();
} // end function processGrades

// find minimum grade
int GradeBook::getMinimum() const

{

int lowGrade = 100; // assume lowest grade is 100

// loop through grades array
for (int grade : grades)

{
// if current grade Tower than TowGrade, assign it to lowGrade
if (grade < lowGrade)
lowGrade = grade; // new lowest grade
} // end for

return lowGrade; // return lowest grade
} // end function getMinimum

// find maximum grade
int GradeBook::getMaximum() const
{
int highGrade = 0; // assume highest grade is 0

// loop through grades array
for (int grade : grades)

{
// if current grade higher than highGrade, assign it to highGrade
if (grade > highGrade)
highGrade = grade; // new highest grade
} // end for

return highGrade; // return highest grade
} // end function getMaximum

// determine average grade for test
double GradeBook::getAverage() const

{
int total = 0; // initialize total

// sum grades in array
for (int grade : grades)
total += grade;

Fig. 7.16 | GradeBook class member functions manipulating an array of grades. (Part 2 of 3.)

7.6 Case Study: Class GradeBook Using an array to Store Grades 299

96 // return average of grades

97 return static_cast< double >(total) / grades.size();
98 1} // end function getAverage

99

100 // output bar chart displaying grade distribution
101 void GradeBook: :outputBarChart() const

102 {

103 cout << "\nGrade distribution:" << endl;

104

105 // stores frequency of grades in each range of 10 grades

106 const size_t frequencySize = 11;

107 array< unsigned int, frequencySize > frequency = {}; // init to Os
108

109 // for each grade, increment the appropriate frequency

110 for (int grade : grades)

111 ++frequency[grade / 10];

112

113 // for each grade frequency, print bar in chart

114 for (size_t count = 0; count < frequencySize; ++count)

115 {

116 // output bar Tabels ("0-9:", ..., "90-99:", "100:")

117 if (0 == count)

118 cout << " 0-9: "

119 else if (10 == count)

120 cout << " 100: 'y

121 else

122 cout << count * 10 << "-" << (count * 10) + 9 << ": 'y
123

124 // print bar of asterisks

125 for (unsigned int stars = 0; stars < frequency[count]; ++stars)
126 cout << "'y

127

128 cout << endl; // start a new line of output

129 } // end outer for

130 } // end function outputBarChart

131

132 // output the contents of the grades array
133 void GradeBook: :outputGrades() const

134 {

135 cout << "\nThe grades are:\n\n";

136

137 // output each student's grade

138 for (size_t student = 0; student < grades.size(); ++student)

139 cout << "Student " << setw(2) << student + 1 << ": " << setw(3)
140 << grades[student] << endl;

141 } // end function outputGrades

Fig. 7.16 | GradeBook class member functions manipulating an array of grades. (Part 3 of 3.)

The size of the array in line 28 of Fig. 7.15 is specified by public static const data
member students (declared in line 12), which is pub1ic so that it’s accessible to the class’s
clients. We'll soon see an example of a client program using this constant. Declaring stu-
dents with the const qualifier indicates that this data member is constant—its value
cannot be changed after being initialized. Keyword static in this variable declaration

300 Chapter 7 Class Templates array and vector; Catching Exceptions

indicates that the data member is shared by all objects of the class—so in this particular
implementation of class GradeBook, all GradeBook objects store grades for the same
number of students. Recall from Section 3.4 that when each object of a class maintains its
own copy of an attribute, the variable that represents the attribute is known as a data
member—each object (instance) of the class has a separate copy of the variable in memory.
There are variables for which each object of a class does 70r have a separate copy. That is
the case with static data members, which are also known as class variables. When objects
of a class containing static data members are created, all the objects share one copy of the
class’s static data members. A static data member can be accessed within the class def-
inition and the member-function definitions like any other data member. As you’ll soon
see, a public static data member can also be accessed outside of the class, even when no
objects of the class exist, using the class name followed by the scope resolution operator (: :)
and the name of the data member. You’'ll learn more about static data members in
Chapter 9.

Constructor

The class’s constructor (declared in line 15 of Fig. 7.15 and defined in lines 10-14 of
Fig. 7.16) has two parameters—the course name and a reference to an array of grades.
When a program creates a GradeBook object (e.g., line 15 of Fig. 7.17), the program passes
an existing int array to the constructor, which copies the array’s values into the data
member grades (line 12 of Fig. 7.16). The grade values in the passed array could have
been input from a user or read from a file on disk (as we discuss in Chapter 14, File Pro-
cessing). In our test program, we simply initialize an array with a set of grade values
(Fig. 7.17, lines 11-12). Once the grades are stored in data member grades of class
GradeBook, all the class’s member functions can access the grades array as needed to per-
form various calculations. Note that the constructor receives both the string and the ar-
ray by reference—this is more efficient than receiving copies of the original string and
array. The constructor does not need to modify either the original string or array, so
we also declared each parameter as const to ensure that the constructor does not acciden-
tally modify the originald data in the caller. We also modified function setCourseName to
receives its string argument by reference.

Member Function processGrades

Member function processGrades (declared in line 20 of Fig. 7.15 and defined in lines
38-53 of Fig. 7.16) contains a series of member function calls that output a report sum-
marizing the grades. Line 41 calls member function outputGrades to print the contents
of the array grades. Lines 138—140 in member function outputGrades use a for state-
ment to output each student’s grade. Although array indices start at 0, a professor would
typically number students starting at 1. Thus, lines 139-140 output student + L as the stu-
dent number to produce grade labels "Student 1: ", "Student 2: ", and so on.

Member Function getAverage

Member function processGrades next calls member function getAverage (line 45) to ob-
tain the average of the grades. Member function getAverage (declared in line 23 of
Fig. 7.15 and defined in lines 88-98 of Fig. 7.16) totals the values in array grades before
calculating the average. The averaging calculation in line 97 uses grades.size() to deter-
mine the number of grades being averaged.

7.6 Case Study: Class GradeBook Using an array to Store Grades 301

Member Functions getMinimum and getMaximum

Lines 48—49 in processGrades call member functions getMinimum and getMaximum to de-
termine the lowest and highest grades of any student on the exam, respectively. Let’s ex-
amine how member function getMinimum finds the Jowest grade. Because the highest grade
allowed is 100, we begin by assuming that 100 is the lowest grade (line 58). Then, we com-
pare each of the elements in the array to the lowest grade, looking for smaller values. Lines
61-66 in member function getMinimum loop through the array, and line 64 compares
cach grade to TowGrade. If a grade is less than TowGrade, TowGrade is set to that grade.
When line 68 executes, TowGrade contains the lowest grade in the array. Member func-
tion getMaximum (lines 72—85) works similarly to member function getMinimum.

Member Function outputBarChart

Finally, line 52 in member function processGrades calls member function outputBarChart
to print a distribution chart of the grade data using a technique similar to that in Fig. 7.9. In
that example, we manually calculated the number of grades in each category (i.e., 0-9, 10—
19, ..., 90-99 and 100) by simply looking at a set of grades. In this example, lines 110-111
use a technique similar to that in Fig. 7.10 and Fig. 7.11 to calculate the frequency of grades
in each category. Line 107 declares and creates array frequency of 11 unsigned ints to
store the frequency of grades in each grade category. For each grade in array grades, lines
110-111 increment the appropriate element of the frequency array. To determine which
element to increment, line 111 divides the current grade by 10 using integer division. For
example, if grade is 85, line 111 increments frequency[8] to update the count of grades in
the range 80-89. Lines 114129 next print the bar chart (see Fig. 7.17) based on the values
in array frequency. Like lines 28-29 of Fig. 7.9, lines 125-126 of Fig. 7.16 use a value in
array frequency to determine the number of asterisks to display in each bar.

Testing Class GradeBook

The program of Fig. 7.17 creates an object of class GradeBook (Figs. 7.15-7.16) using the
int array grades (declared and initialized in lines 11-12). The scope resolution operator
(::) is used in the expression “GradeBook: : students” (line 11) to access class GradeBook’s
static constant students. We use this constant here to create an array that is the same
size as the array stored as a data member in class GradeBook. Line 13 declares a string
representing the course name. Line 15 passes the course name and the array of grades to
the GradeBook constructor. Line 16 displays a welcome message, and line 17 invokes the
GradeBook object’s processGrades member function.

// Fig. 7.17: fig07_17.cpp

// Creates GradeBook object using an array of grades.
#include <array>

#include // GradeBook class definition
using namespace std;

// function main begins program execution
int main(Q)

{

VO ~NONUND WN -

Fig. 7.17 | Creates a GradeBook object’ using an array of grades, then invokes member
function processGrades to analyze them. (Part | of 2.)

302 Chapter 7 Class Templates array and vector; Catching Exceptions

10 // array of student grades

11 const array< 1int, > grades =

lz { ’ ’ ’ ’ ’ ’ ’ ’ ’ };

13 string courseName = H
14

15 GradeBook myGradeBook(courseName, grades);

16 myGradeBook.displayMessage();

17 myGradeBook.processGrades();

18 } // end main

Fig. 7.17 | Creates a GradeBook object” using an array of grades, then invokes member
function processGrades to analyze them. (Part 2 of 2.)

7.7 Sorting and Searching arrays

In this section, we use the built-in C++ Standard Library sort function to arrange the el-
ements in an array into ascending order and the built-in binary_search function to de-
termine whether a value is in the array.

Sorting

Sorting data—placing it into ascending or descending order—is one of the most impor-
tant computing applications. A bank sorts all checks by account number so that it can pre-
pare individual bank statements at the end of each month. Telephone companies sort their
phone directories by last name; and within all entries with the same last name, sorting
those by first name to make it easy to find phone numbers. Virtually every organization
must sort some data and, in many cases, massive amounts of it. Sorting data is an intrigu-
ing problem that has attracted some of the most intense research efforts in the field of com-
puter science. In Chapter 20, we investigate and implement several sorting schemes,
discuss their performance and introduce Big O (pronounced “Big Oh”) notation for char-
acterizing how hard each scheme works to accomplish its task.

Searching

Often it may be necessary to determine whether an array contains a value that matches a
certain key value. The process of finding a particular element of an array is called search-
ing. In Chapter 20, we investigate and implement two search algorithms—the simple but
slow linear search for searching an unordered array and the more complex but much faster
binary search for searching an ordered array.

Demonstrating Functions sort and binary_search
Figure 7.18 begins by creating an unsorted array of strings (lines 13-14) and displaying
the contents of the array (lines 17-19). Next, line 21 uses C++ Standard Library function
sort to sort the elements of the array colors into ascending order. The sort function’s
arguments specify the range of elements that should be sorted—in this case, the entire ar-
ray. We'll discuss the complete details of class template array’s begin and end functions
in later chapters. As you'll see, function sort can be used to sort the elements of several
different types of data structures. Lines 24—26 display the contents of the sorted array.
Lines 29 and 34 demonstrate use binary_search to determine whether a value is in the
array. The sequence of values must be sorted in ascending order first—binary_search does

7.7 Sorting and Searching arrays 303

not verify this for you. The function’s first two arguments represent the range of elements to
search and the third is the search key—the value to locate in the array. The function returns
a bool indicating whether the value was found. In Chapter 16, we'll use a C++ Standard
function find to obtain the location of the search key in an array.

1 // Fig. 7.18: fig07_18.cpp

2 // Sorting and searching arrays.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 #include <string>

7 #include <algorithm> // contains sort and binary_search

8 using namespace std;

9

10 1int main(Q)

11 {

12 const size_t arraySize = 7; // size of array colors

13 array< string, arraySize > colors = { "red”, "orange", "yellow",
14 "green", "blue", "indigo", "violet" };

15

16 // output original array

17 cout << "Unsorted array:\n";

18 for (string color : colors)

19 cout << color << " "
20
21 sort(colors.begin(), colors.end()); // sort contents of colors
22
23 // output sorted array
24 cout << "\nSorted array:\n";
25 for (string item : colors)
26 cout << item << " "
27
28 // search for "indigo" in colors
29 bool found = binary_search(colors.begin(), colors.end(), "indigo");
30 cout << "\m\n\"1indigo\" " << (found ? "was" : "was not")
31 << " found 1in colors" << endl;
32
33 // search for "cyan" in colors
34 found = binary_search(colors.begin(), colors.end(), "cyan”);
35 cout << "\"cyan\" " << (found ? "was" : "was not")
36 << " found 1in colors" << endl;

37 } // end main

Unsorted array:

red orange yellow green blue indigo violet
Sorted array:

bTue green indigo orange red violet yellow

"indigo" was found in colors
"cyan" was not found in colors

Fig. 7.18 | Sorting and searching arrays.

304 Chapter 7 Class Templates array and vector; Catching Exceptions

7.8 Multidimensional arrays

You can use arrays with two dimensions (i.e., subscripts) to represent tables of values con-
sisting of information arranged in rows and columns. To identify a particular table ele-
ment, we must specify two subscripts—by convention, the first identifies the element’s
row and the second identifies the element’s column. arrays that require two subscripts to
identify a particular element are called two-dimensional arrays or 2-D arrays. arrays
with two or more dimensions are known as multidimensional arrays and can have more
than two dimensions. Figure 7.19 illustrates a two-dimensional array, a. The array con-
tains three rows and four columns, so it’s said to be a 3-by-4 array. In general, an array
with 7 rows and 7 columns is called an 7-by-7 array.

Column 0 Column | Column 2 Column 3
Rowo a[0J[01 afo01[1] af01[2]1 a[01[3]
Rowl a[1]J[01 af[1]1[11 af[1]1[21 af[11[3]1]

Row2 al 21001 af2101]1 af21[2]1 al[2][3]

L Column subscript

Row subscript
array name

Fig. 7.19 | Two-dimensional array with three rows and four columns.

Every element in array a is identified in Fig. 7.19 by an element name of the form
a[i][j]1, where a is the name of the array, and i and j are the subscripts that uniquely
identify each element in a. Notice that the names of the elements in row 0 all have a first
subscript of 0; the names of the elements in column 3 all have a second subscript of 3.

Y Common Programming Error 7.5
[' Referencing a two-dimensional array element a[x][y] incorrectly as a[x, y] is an error.
et Actually, a[x, y] is treated as aly], because C++ evaluates the expression x, y (contain-

ing a comma operator) simply as y (the last of the comma-separated expressions).

Figure 7.20 demonstrates initializing two-dimensional arrays in declarations. Lines
13—14 each declare an arrays of arrays with two rows and three columns. Notice the
nested array type declaration. In each array, the type of its elements is specified as

array< int, columns >

indicating that each array contains as its elements three-element arrays of int values—
the constant columns has the value 3.

1 // Fig. 7.20: fig07_20.cpp
2 // Initializing multidimensional arrays.
3 #include <iostream>

Fig. 7.20 | Initializing multidimensional arrays. (Part | of 2.)

7.8 Multidimensional arrays 305

4 #include <array>

5 using namespace std;

6

7 const size_t rows = 2;

8 const size_t columns = 3;

9 void printArray(const array< array< int, columns >, rows> &);

10

Il int mainQ)

12 {

13 array< array< int, columns >, rows > arrayl = { 1, 2, 3, 4, 5, e
14 array< array< int, columns >, rows > array2 = { 1, 2, 3, 4, };
15

16 cout << << endl;

17 printArray(arrayl);

18

19 cout << << endl;

20 printArray(array2);

21 } // end main

22

23 // output array with two rows and three columns
24 void printArray(const array< array< int, columns >, rows> & a)

25 {

26 // Toop through array's rows

27 for (auto const &row : a)

28 {

29 // Toop through columns of current row

30 for (auto const &element : row)

31 cout << element << ;

32

33 cout << endl; // start new line of output
34 } // end outer for

35 } // end function printArray

Values in arrayl by row are:
123
456

Values 1in array2 by row are:
123
450

Fig. 7.20 | Initializing multidimensional arrays. (Part 2 of 2.)

The declaration of array1 (line 13) provides six initializers. The compiler initializes
the elements of row 0 followed by the elements of row 1. So, the first three values initialize
row 0’s elements to 1, 2 and 3, and the last three initialize row 1’s elements to 4, 5 and 6.
The declaration of array2 (line 14) provides only five initializers. The initializers are
assigned to row 0, then row 1. Any elements that do not have an explicit initializer are ini-
tialized to zero, so array2[1][2] is O.

The program calls function printArray to output each array’s elements. Notice that
the function prototype (line 9) and definition (lines 24-35) specify that the function
receives a two row and three column array. The parameter receives the array by reference
and is declared const because the function does not modify they array’s elements.

3

306 Chapter 7 Class Templates array and vector; Catching Exceptions

Nested Range-Based for Statements

To process the elements of a two-dimensional array, we use a nested loop in which the
outer loop iterates through the rows and the /nner loop iterates through the columns of a
given row. Function printArray’s nested loop is implemented with range-based for state-
ments. Lines 27 and 30 introduce the C++11 auto keyword, which tells the compiler to
infer (determine) a variable’s data type based on the variable’s initializer value. The outer
loop’s range variable row is initialized with an element from the parameter a. Looking at
the array’s declaration, you can see that the array contains elements of type

array< int, columns >

so the compiler infers that row refers to a three-element array of int values (again, col-
umns is 3). The const & in row’s declaration indicates that the reference cannot be used to
modify the rows and prevents each row from being copied into the range variable. The in-
ner loop’s range variable eTement is initialized with one element of the array represented
by row, so the compiler infers that element refers to an int because each row contains
three int values. In an IDE, you can typically hover your mouse over a variable declared
with auto and the IDE will display the variable’s inferred type. Line 31 displays the value

from a given row and column.

Nested Counter-Controlled For Statements
We could have implemented the nested loop with counter-controlled repetition as follows:

for (size_t row = 0; row < a.size(); ++row)

{
for (size_t column = 0; column < a[row].size(); ++column)
cout << a[row][column] << o

cout << endl;
} // end outer for

Other Common array Manipulations
Many common array manipulations use for statements. For example, the following for
statement sets all the elements in row 2 of array a in Fig. 7.19 to zero:

for (size_t column = 0; column < 4; ++column)
al 1[column] = 0;

The for statement varies only the second subscript (i.e., the column subscript). The pre-
ceding for statement is equivalent to the following assignment statements:

al 2][0] = 0;

af 2 [1] = 0;

al 2 1L 21 =
10 3 1]

al

The following nested counter-controlled for statement determines the total of 2/ the el-
ements in array a in Fig. 7.19:

total = 0;
for (size_t row = 0; row < a.size(); ++row)
for (size_t column = 0; column < a[row].size(); ++column)

total += a[row][column];

7.9 Case Study: Class GradeBook Using a Two-Dimensional array 307

The for statement totals the elements of the array one row at a time. The outer for state-
ment begins by setting row (i.e., the row subscript) to 0, so the elements of row 0 may be
totaled by the inner for statement. The outer for statement then increments row to 1, so
the elements of row 1 can be totaled. Then, the outer for statement increments row to 2,
so the elements of row 2 can be totaled. When the nested for statement terminates, total
contains the sum of all the array elements. This nested loop can be implemented with
range-based for statements as:

total = 0;

for (auto row : a) // for each row
for (auto column : row) // for each column in row
total += column;

7.9 Case Study: Class GradeBook Using a Two-
Dimensional array

In Section 7.6, we presented class GradeBook (Figs. 7.15-7.16), which used a one-dimen-
sional array to store student grades on a single exam. In most semesters, students take sev-
eral exams. Professors are likely to want to analyze grades across the entire semester, both
for a single student and for the class as a whole.

Storing Student Grades in a Two-Dimensional array in Class GradeBook

Figure 7.21 shows the output that summarizes 10 students grades on three exams. We
store the grades as a two-dimensional array in an object of the next version of class Grade-
Book Figures 7.22-7.23. Each row of the array represents a single student’s grades for the
entire course, and each column represents all the grades the students earned for one par-
ticular exam. A client program, such as Fig. 7.24, passes the array as an argument to the
GradeBook constructor. Since there are 10 students and three exams, we use a ten-by-three
array to store the grades.

Welcome to the grade book for
CS101 Introduction to C++ Programming!

The grades are:

Test 1 Test 2 Test 3 Average

Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77 .67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Fig. 7.21 | Output of GradeBook that uses two-dimensional arrays. (Part | of 2.)

308

Chapter 7 Class Templates array and vector; Catching Exceptions

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:

0-9:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69:
70-79:
80-89:
90-99:

100:

Fedededededed

dededk

Fig. 7.21 | Output of GradeBook that uses two-dimensional arrays. (Part 2 of 2.)

1 // Fig. 7.22: GradeBook.h

2 // Definition of class GradeBook that uses a

3 // two-dimensional array to store test grades.

4 // Member functions are defined in GradeBook.cpp

5 #include <array>

6 #include <string>

7

8 // GradeBook class definition

9 class GradeBook

10 {

11 public:

12 // constants

13 static const size_t students = 10; // number of students

14 static const size_t tests = 3; // number of tests

15

16 // constructor initializes course name and array of grades

17 GradeBook(const std::string &,

18 std::array< std::array< int, tests >, students > &);

19
20 void setCourseName(const std::string &); // set the course name
21 std::string getCourseName() const; // retrieve the course name
22 void displayMessage() const; // display a welcome message
23 void processGrades() const; // perform operations on the grade data
24 int getMinimum() const; // find the minimum grade in the grade book
25 int getMaximum() const; // find the maximum grade in the grade book
26 double getAverage(const std::array< int, tests > &) const;
27 void outputBarChart() const; // output bar chart of grade distribution
28 void outputGrades() const; // output the contents of the grades array
29 private:
30 std::string courseName; // course name for this grade book
31 std::array< std::array< int, tests >, students > grades; // 2D array
32 }; // end class GradeBook

Fig. 7.22 | Definition of class GradeBook that uses a two-dimensional array to store test grades.

7.9 Case Study: Class GradeBook Using a Two-Dimensional array 309

VO~NONUNDWN=

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

// Fig. 7.23: GradeBook.cpp

// Member-function definitions for class GradeBook that
// uses a two-dimensional array to store grades.
#include <iostream>

#include <iomanip> // parameterized stream manipulators
using namespace std;

// include definition of class GradeBook from GradeBook.h
#include "GradeBook.h" // GradeBook class definition

// two-argument constructor initializes courseName and grades array
GradeBook: :GradeBook(const string &name,
std::array< std::array< int, tests >, students > &gradesArray)
: courseName(name), grades(gradesArray)

{

} // end two-argument GradeBook constructor

// function to set the course name
void GradeBook: :setCourseName(const string &name)
{
courseName = name; // store the course name
} // end function setCourseName

// function to retrieve the course name
string GradeBook::getCourseName() const
{

return courseName;
} // end function getCourseName

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage() const
{
// this statement calls getCourseName to get the
// name of the course this GradeBook represents
cout << "Welcome to the grade book for\n" << getCourseName() <<
<< endl;
} // end function displayMessage

// perform various operations on the data
void GradeBook: :processGrades() const
{

// output grades array

outputGrades();

// call functions getMinimum and getMaximum
cout << "\nLowest grade 1in the grade book is
<< "\nHighest grade in the grade book is

<< getMinimum(Q)

" << getMaximum() << endl;
// output grade distribution chart of all grades on all tests
outputBarChart();

} // end function processGrades

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional
array to store grades. (Part | of 4.)

310 Chapter 7 Class Templates array and vector; Catching Exceptions

52
53 // find minimum grade in the entire gradebook
54 int GradeBook::getMinimum() const

55 {

56 int lowGrade = 100; // assume Towest grade is 100
57

58 // Toop through rows of grades array

59 for (auto const &student : grades)

60 {

6l // loop through columns of current row

62 for (auto const &grade : student)

63 {

64 // if current grade less than lowGrade, assign it to lowGrade
65 if (grade < lowGrade)

66 lowGrade = grade; // new lowest grade

67 } // end inner for

68 } // end outer for

69

70 return TowGrade; // return lowest grade

71 } // end function getMinimum

72

73 // find maximum grade in the entire gradebook
74 int GradeBook::getMaximum() const

75 {

76 int highGrade = 0; // assume highest grade is 0
77

78 // loop through rows of grades array

79 for (auto const &student : grades)

80 {

81 // loop through columns of current row

82 for (auto const &grade : student)

83 {

84 // if current grade greater than highGrade, assign to highGrade
85 if (grade > highGrade)

86 highGrade = grade; // new highest grade
87 } // end dinner for

88 } // end outer for

89

90 return highGrade; // return highest grade

91 } // end function getMaximum

92

93 // determine average grade for particular set of grades
94 double GradeBook::getAverage(const array<int, tests> &setOfGrades) const
95 {

96 int total = 0; // initialize total
97

98 // sum grades in array

99 for (int grade : setOfGrades)
100 total += grade;

101

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional
array to store grades. (Part 2 of 4.)

7.9 Case Study: Class GradeBook Using a Two-Dimensional array 311

102 // return average of grades

103 return static_cast< double >(total) / setOfGrades.size();
104 } // end function getAverage

105

106 // output bar chart displaying grade distribution
107 void GradeBook: :outputBarChart() const

108 {

109 cout << "\nOverall grade distribution:" << endl;

110

111 // stores frequency of grades in each range of 10 grades
112 const size_t frequencySize = 11;

113 array< unsigned int, frequencySize > frequency = {}; // init to Os
114

115 // for each grade, increment the appropriate frequency
116 for (auto const &student : grades)

117 for (auto const &test : student)

118 ++frequency[test / 10 1;

119

120 // for each grade frequency, print bar in chart

121 for (size_t count = 0; count < frequencySize; ++count)
122 {

123 // output bar Tabel ("0-9:", ..., "90-99:", "100:")
124 if (0 == count)

125 cout << " 0-9: "y

126 else if (10 == count)

127 cout << " 100: "

128 else

129 cout << count * 10 << "-" << (count * 10) + 9 << ": "
130

131 // print bar of asterisks

132 for (unsigned int stars = 0; stars < frequency[count]; ++stars)
133 cout << '*';

134

135 cout << endl; // start a new line of output

136 } // end outer for

137 } // end function outputBarChart

138

139 // output the contents of the grades array
140 void GradeBook: :outputGrades() const

141 {

142 cout << "\nThe grades are:\n\n";

143 cout << " "; // align column heads

144

145 // create a column heading for each of the tests

146 for (size_t test = 0; test < tests; ++test)

147 cout << "Test " << test + 1 << " "

148

149 cout << "Average" << endl; // student average column heading
150

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional
array to store grades. (Part 3 of 4.)

312 Chapter 7 Class Templates array and vector; Catching Exceptions

151 // create rows/columns of text representing array grades

152 for (size_t student = 0; student < grades.size(); ++student)

153 {

154 cout << << setw() << student + 1;

155

156 // output student's grades

157 for (size_t test = 0; test < grades[student].size(); ++test)
158 cout << setw() << grades[student][test];

159

160 // call member function getAverage to calculate student's average;
161 // pass row of grades as the argument

162 double average = getAverage(grades[student]);

163 cout << setw(9) << setprecision(2) << fixed << average << endl;
164 } // end outer for

165 } // end function outputGrades

Fig. 7.23 | Member-function definitions for class GradeBook that uses a two-dimensional
array to store grades. (Part 4 of 4.)

Overview of Class GradeBook’s Functions

Five member functions (declared in lines 24-28 of Fig. 7.22) perform array manipula-
tions to process the grades. Each of these member functions is similar to its counterpart in
the carlier one-dimensional array version of class GradeBook (Figs. 7.15-7.16). Member
function getMinimum (defined in lines 5471 of Fig. 7.23) determines the lowest grade of
all students for the semester. Member function getMaximum (defined in lines 74-91 of
Fig. 7.23) determines the highest grade of all students for the semester. Member function
getAverage (lines 94-104 of Fig. 7.23) determines a particular student’s semester average.
Member function outputBarChart (lines 107-137 of Fig. 7.23) outputs a bar chart of the
distribution of all student grades for the semester. Member function outputGrades (lines
140-165 of Fig. 7.23) outputs the two-dimensional array in a tabular format, along with
cach student’s semester average.

Functions getMinimum and getMaximum

Member functions getMinimum, getMaximum, outputBarChart and outputGrades each
loop through array grades by using nested range-based for or counter-controlled for
statements. For example, consider the nested for statement (lines 59—-68) in member
function getMinimum. The outer for statement loops through the rows that represent each
student and the inner for loops through the grades of a given student. Each grade is com-
pared with variable TowGrade in the body of the inner for statement. If a grade is less than
lowGrade, TowGrade is set to that grade. This repeats until all rows and columns of grades
have been traversed. When execution of the nested statement is complete, TowGrade con-
tains the smallest grade in the two-dimensional array. Member function getMaximum
works similarly to member function getMinimum.

Function outputBarChart

Member function outputBarChart in Fig. 7.23 is nearly identical to the one in Fig. 7.16.
However, to output the overall grade distribution for a whole semester, the function uses a
nested for statement (lines 116—118) to increment the elements of the one-dimensional

7.9 Case Study: Class GradeBook Using a Two-Dimensional array 313

array frequency based on all the grades in the two-dimensional array. The rest of the code
in each of the two outputBarChart member functions that displays the chart is identical.

Function outputGrades

Member function outputGrades (lines 140—165) uses nested counter-controlled for state-
ments to output values of the array grades, in addition to each student’s semester average.
The output in Fig. 7.21 shows the result, which resembles the tabular format of a professor’s
physical grade book. Lines 146147 print the column headings for each test. We use a coun-
ter-controlled for statement so that we can identify each test with a number. Similarly, the
for statement in lines 152—164 first outputs a row label using a counter variable to identify
each student (line 154). Although array indices start at 0, lines 147 and 154 output test + 1
and student + 1, respectively, to produce test and student numbers starting at 1 (see
Fig. 7.21). The inner for statement in lines 157158 uses the outer for statement’s counter
variable student to loop through a specific row of array grades and output each student’s
test grade. Finally, line 162 obtains each student’s semester average by passing the current
row of grades (i.e., grades[student]) to member function getAverage.

Function getAverage

Member function getAverage (lines 94—104) takes as an argument a one-dimensional array
of test results for a particular student. When line 162 calls getAverage, the first argument is
grades[student], which specifies that a particular row of the two-dimensional array
grades should be passed to getAverage. For example, based on the array created in
Fig. 7.24, the argument grades[1] represents the three values (a one-dimensional array of
grades) stored in row 1 of the two-dimensional array grades. A two-dimensional array’s
elements are one-dimensional arrays. Member function getAverage calculates the sum of
the array elements, divides the total by the number of test results and returns the floating-
point result as a doubTe value (line 103).

Testing Class GradeBook

The program in Fig. 7.24 creates an object of class GradeBook (Figs. 7.22—7.23) using the
two-dimensional array of ints named grades (declared and initialized in lines 11-21).
Line 11 accesses class GradeBook’s static constants students and tests to indicate the
size of each dimension of array grades. Lines 23—24 pass a course name and grades to
the GradeBook constructor. Lines 25-26 then invoke myGradeBook’s displayMessage and
processGrades member functions to display a welcome message and obtain a report sum-
marizing the students’ grades for the semester, respectively.

// Fig. 7.24: fig07_24.cpp

// Creates GradeBook object using a two-dimensional array of grades.
#include <array>

#include // GradeBook class definition

using namespace std;

NUNh WN -

Fig. 7.24 | Creates a GradeBook object using a two-dimensional array of grades, then invokes

member function processGrades to analyze them. (Part | of 2.)

314 Chapter 7 Class Templates array and vector; Catching Exceptions

7

8

)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// function main begins program execution
int main(Q)
{
// two-dimensional array of student grades
array< array< int, GradeBook::tests >, GradeBook::students > grades =

{ 87, 96, 70,
68, 87, 90,
94, 100, 90,
100, 81, 82,
83, 65, 85,
78, 87, 65,
85, 75, 83,
91, 94, 100,
76, 72, 84,
87, 93, 73 };

GradeBook myGradeBook (

"CS101 Introduction to C++ Programming", grades);
myGradeBook.displayMessage();
myGradeBook.processGrades();

} // end main

Fig. 7.24 | Creates a GradeBook object using a two-dimensional array of grades, then invokes
member function processGrades to analyze them. (Part 2 of 2.)

7.10 Introduction to C++ Standard Library Class
Template vector

We now introduce C++ Standard Library class template vector, which is similar to class
template array, but also supports dynamic resizing. Except for the features that modify a
vector, the other features shown in Fig. 7.25 also work for arrays. Standard class template
vector is defined in header <vector> (line 5) and belongs to namespace std. Chapter 15
discusses the full functionality of vector. At the end of this section, we'll demonstrate class
vector’s bounds checking capabilities and introduce C++’s exception-handling mecha-
nism, which can be used to detect and handle an out-of-bounds vector index.

VO~NONUNDWN=

// Fig. 7.25: fig07_25.cpp

// Demonstrating C++ Standard Library class template vector.
#include <iostream>

#include <iomanip>

#include <vector>

#include <stdexcept>

using namespace std;

void outputVector(const vector< int > &); // display the vector
void inputVector(vector< int > &); // input values into the vector

int main()

{

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part | of 4.)

7.10 Introduction to C++ Standard Library Class Template vector

315

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

vector< int > integersl(7); // 7-element vector< int >
vector< int > integers2(10); // 10-element vector< int >

// print integersl size and contents

cout << "Size of vector integersl is << 1integersl.size()
<< "\nvector after 1initialization:" << endl;

outputVector(integersl);

// print integers2 size and contents

cout << "\nSize of vector integers2 is << 1integers2.size()
<< "\nvector after initialization:" << endl;

outputVector(integers2);

// input and print integersl and integers2
cout << "\nEnter 17 integers:" << endl;
inputVector(integersl);

inputVector(integers2);

cout << "\nAfter 1input, the vectors contain:\n"
<< "integersl:" << endl;

outputVector(integersl);

cout << "integers2:" << endl;

outputVector(integers2);

// use inequality (!=) operator with vector objects
cout << "\nEvaluating: integersl != 1integers2" << endl;

if (integersl != integers2)
cout << "integersl and integers2 are not equal" << endl;

// create vector integers3 using integersl as an

// initializer; print size and contents

vector< int > integers3(integersl); // copy constructor

cout << "\nSize of vector integers3 is " << integers3.size()
<< "\nvector after initialization:" << endl;

outputVector(integers3);

// use overloaded assignment (=) operator
cout << "\nAssigning integers2 to integersl:" << endl;
integersl = integers2; // assign integers2 to integersl

cout << "integersl:" << endl;
outputVector(integersl);
cout << "integers2:" << endl;
outputVector(integers2);

// use equality (==) operator with vector objects
cout << "\nEvaluating: integersl == integers2" << endl;

if (integersl == integers2)
cout << "integersl and integers2 are equal" << endl;

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 2 of 4.)

316 Chapter 7 Class Templates array and vector; Catching Exceptions

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

// use square brackets to use the value at Tocation 5 as an rvalue
cout << "\nintegersl[5] is " << integersl[5];

// use square brackets to create lvalue

cout << "\n\nAssigning 1000 to integersl[5]" << endl;
integersl[5] = 1000;

cout << "integersl:" << endl;

outputVector(integersl);

// attempt to use out-of-range subscript
try
{
cout << "\nAttempt to display integersl.at(15)" << endl;
cout << integersl.at(15) << endl; // ERROR: out of range
} // end try
catch (out_of_range &ex)

{
cerr << "An exception occurred:
} // end catch

<< ex.what() << endl;

// changing the size of a vector
cout << "\nCurrent 1integers3 size is: << 1integers3.size() << endl;
integers3.push_back(1000); // add 1000 to the end of the vector
cout << "New integers3 size is: " << integers3.size() << endl;
cout << "integers3 now contains: ";
outputVector(integers3);

} // end main

// output vector contents
void outputVector(const vector< int > &array)
{
for (int item : items)
cout << item << " ";

cout << endl;
} // end function outputVector

// input vector contents
void inputVector(vector< int > &array)
{
for (int &item : items)
cin >> item;
} // end function inputVector

Size of vector integersl is 7
vector after initialization:
00000O00O

Size of vector integers2 is 10
vector after initialization:
0000000O0O0O0

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 3 of 4.)

7.10 Introduction to C++ Standard Library Class Template vector 317

Enter 17 dintegers:
1234567891011 12 13 14 15 16 17

After 1input, the vectors contain:
integersl:

1234567

integers2:

8 9 10 11 12 13 14 15 16 17

Evaluating: integersl != integers2
integersl and integers2 are not equal

Size of vector integers3 is 7
vector after initialization:
1234567

Assigning integers2 to integersl:
integersl:

8 9 10 11 12 13 14 15 16 17
integers2:

8§ 9 10 11 12 13 14 15 16 17

Evaluating: integersl == integers2
integersl and integers2 are equal

integers1[5] is 13

Assigning 1000 to integersl[5]
integersl:
8 9 10 11 12 1000 14 15 16 17

Attempt to display integersl.at(15)
An exception occurred: invalid vector<T> subscript

Current integers3 size is: 7
New integers3 size is: 8
integers3 now contains: 1 2 3 4 5 6 7 1000

Fig. 7.25 | Demonstrating C++ Standard Library class template vector. (Part 4 of 4.)

Creating vector Objects

Lines 1415 create two vector objects that store values of type int—integers1 contains
seven elements, and integers2 contains 10 elements. By default, all the elements of each
vector object are set to 0. Like arrays, vectors can be defined to store most data types,
by replacing int in vector<int> with the appropriate type.

vector Member Function size; Function outputVector

Line 18 uses vector member function size to obtain the size (i.e., the number of
clements) of integersl. Line 20 passes integersl to function outputVector (lines 96—
102), which uses a range-based for statement to obtain the value in each element of the
vector for output. As with class template array, you can also do this using a counter-con-
trolled loop and the subscript ([1) operator. Lines 23 and 25 perform the same tasks for
integers?2.

318 Chapter 7 Class Templates array and vector; Catching Exceptions

Function inputVector

Lines 29-30 pass integersl and integers2 to function inputVector (lines 105-109) to
read values for each vector’s elements from the user. The function uses a range-based for
statement with a range variable that is a reference to an int to form /values that are used
to store the input values in each vector element.

Comparing vector Objects for Inequality

Line 41 demonstrates that vector objects can be compared with one another using the 1=
operator. If the contents of two vectors are not equal, the operator returns true; other-
wise, it returns false.

Initializing One vector with the Contents of Another

The C++ Standard Library class template vector allows you to create a new vector object
that’s initialized with the contents of an existing vector. Line 46 creates a vector object
integers3 and initializes it with a copy of integers1. This invokes vector’s so-called copy
constructor to perform the copy operation. You'll learn about copy constructors in detail
in Chapter 10. Lines 48—50 output the size and contents of integers3 to demonstrate
that it was initialized correctly.

Assigning vectors and Comparing vectors for Equality

Line 54 assigns integers2 to integersl, demonstrating that the assignment (=) operator
can be used with vector objects. Lines 56—59 output the contents of both objects to show
that they now contain identical values. Line 64 then compares integersl to integers2
with the equality (==) operator to determine whether the contents of the two objects are
equal after the assignment in line 54 (which they are).

Using the [1 Operator to Access and Modify vector Elements

Lines 68 and 70 use square brackets ([]) to obtain a vector element and use it as an rvalue
and as an lvalue, respectively. Recall from Section 5.9 that an rvalue cannot be modified, but
an lvalue can. As is the case with arrays, C++ is not required to perform bounds checking when
vector elements are accessed with square brackets.! Therefore, you must ensure that operations
using [] do not accidentally attempt to manipulate elements outside the bounds of the vec-
tor. Standard class template vector does, however, provide bounds checking in its member
function at (as does class template array), which we use at line 80 and discuss shortly.

Exception Handling: Processing an Out-of-Range Subscript

An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement nor-
mally executes correctly, then the problem represents the “exception to the rule.”
Exception handling enables you to create fault-tolerant programs that can resolve (or
handle) exceptions. In many cases, this allows a program to continue executing as if no
problems were encountered. For example, Fig. 7.25 still runs to completion, even though
an attempt was made to access an out-of-range subscript. More severe problems might pre-
vent a program from continuing normal execution, instead requiring the program to no-
tify the user of the problem, then terminate. When a function detects a problem, such as

1. Some compilers have options for bounds checking to help prevent buffer overflows.

7.10 Introduction to C++ Standard Library Class Template vector 319

an invalid array subscript or an invalid argument, it throws an exception—that is, an ex-
ception occurs. Here we introduce exception handling briefly. We'll discuss it in detail in
Chapter 17, Exception Handling: A Deeper Look.

The try Statement

To handle an exception, place any code that might throw an exception in a try statement
(lines 77-85). The try block (lines 77-81) contains the code that might #hrow an excep-
tion, and the catch block (lines 82-85) contains the code that handles the exception if one
occurs. As you'll see in Chapter 17, you can have many catch blocks to handle different
types of exceptions that might be thrown in the corresponding try block. If the code in
the try block executes successfully, lines 82—85 are ignored. The braces that delimit try
and catch blocks” bodies are required.

The vector member function at provides bounds checking and throws an exception
if its argument is an invalid subscript. By default, this causes a C++ program to terminate.
If the subscript is valid, function at returns the element at the specified location as a mod-
ifiable /value or a nonmodifiable fvalue. A nonmodifiable /value is an expression that iden-
tifies an object in memory (such as an element in a vector), but cannot be used to modify
that object. If at is called on a const array or via a reference that’s declared const, the
function returns a nonmodifiable /value.

Executing the catch Block
When the program calls vector member function at with the argument 15 (line 80), the
function attempts to access the element at location 15, which is ousside the vector’s
bounds—integers1 has only 10 elements at this point. Because bounds checking is per-
formed at execution time, vector member function at generates an exception—specifically
line 80 throws an out_of_range exception (from header <stdexcept>) to notify the pro-
gram of this problem. At this point, the try block terminates immediately and the catch
block begins executing—if you declared any variables in the try block, they’re now out of
scope and are not accessible in the catch block.

The catch block declares a type (out_of_range) and an exception parameter (ex) that
it receives as a reference. The catch block can handle exceptions of the specified type. Inside
the block, you can use the parameter’s identifier to interact with a caught exception object.

what Member Function of the Exception Parameter

When lines 8285 carch the exception, the program displays a message indicating the
problem that occurred. Line 84 calls the exception object’s what member function to get
the error message that is stored in the exception object and display it. Once the message is
displayed in this example, the exception is considered handled and the program continues
with the next statement after the catch block’s closing brace. In this example, lines 88-92
execute next. We use exception handling again in Chapters 9-12 and Chapter 17 presents
a deeper look at exception handling.

Changing the Size of a vector

One of the key differences between a vector and an array is that a vector can dynami-
cally grow to accommodate more elements. To demonstrate this, line 88 shows the current
size of integers3, line 89 calls the vector’s push_back member function to add a new el-
ement containing 1000 to the end of the vector and line 90 shows the new size of
integers3. Line 92 then displays integers3’s new contents.

3

320 Chapter 7 Class Templates array and vector; Catching Exceptions

C++11: List Initializing a vector

Many of the array examples in this chapter used list initializers to specify the initial array
element values. C++11 also allows this for vectors (and other C++ Standard Library data
structures). At the time of this writing, list initializers were not yet supported for vectors
in Visual C++.

7.11 Wrap-Up

This chapter began our introduction to data structures, exploring the use of C++ Standard
Library class templates array and vector to store data in and retrieve data from lists and
tables of values. The chapter examples demonstrated how to declare an array, initialize an
array and refer to individual elements of an array. We passed arrays to functions by ref-
erence and used the const qualifier to prevent the called function from modifying the
array’s elements, thus enforcing the principle of least privilege. You learned how to use
C++11’s new range-based for statement to manipulate all the elements of an array. We
also showed how to use C++ Standard Library functions sort and binary_search to sort
and search an array, respectively. You learned how to declare and manipulate multidi-
mensional arrays of arrays. We used nested counter-controlled and nested range-based
for statements to iterate through all the rows and columns of a two-dimensional array.
We also showed how to use auto to infer a variable’s type based on its initializer value. Fi-
nally, we demonstrated the capabilities of C++ Standard Library class template vector. In
that example, we discussed how to access array and vector elements with bounds check-
ing and demonstrated basic exception-handling concepts. In later chapters, we'll continue
our coverage of data structures.

We've now introduced the basic concepts of classes, objects, control statements, func-
tions and array objects. In Chapter 8, we present one of C++’s most powerful features—
the pointer. Pointers keep track of where data and functions are stored in memory, which
allows us to manipulate those items in interesting ways. As you’'ll see, C++ also provides a
language element called an array (different from the class template array) that is closely
related to pointers. In contemporary C++ code, its considered better practice to use
C++11’s array class template rather than traditional arrays.

Summary

Section 7.1 Introduction

* Data structures (p. 279) are collections of related data items. arrays (p. 279) are data structures
consisting of related data items of the same type. arrays are “static” entities in that they remain
the same size throughout their lifetimes.

Section 7.2 arrays
* An array is a consecutive group of memory locations that share the same type.

* Each array knows its own size, which can be determined by calling its size member function
(p. 280).

* To refer to a particular location or element in an array, we specify the name of the array (p. 280)
and the position number of the particular element in the array.

Summary 321

A program refers to any one of an array’s elements by giving the name of the array followed by
the index (p. 279) of the particular element in square brackets ([1).

The first element in every array has index zero (p. 279) and is sometimes called the zeroth element.
An index must be an integer or integer expression (using any integral type).

The brackets used to enclose the index are an operator with the same precedence as parentheses.

Section 7.3 Declaring arrays

arrays occupy space in memory. You specify the type of each element and the number of ele-
ments required by an array as follows:

array< type, arraySize > arrayName;
and the compiler reserves the appropriate amount of memory.

arrays can be declared to contain almost any data type. For example, an array of type char can
be used to store a character string.

Section 7.4 Examples Using arrays

The elements of an array can be initialized in the array declaration by following the array name
with an equals sign and an initializer list (p. 282)—a comma-separated list (enclosed in braces)
of initializers (p. 282).

When initializing an array with an initializer list, if there are fewer initializers than elements in
the array, the remaining elements are initialized to zero. The number of initializers must be less
than or equal to the array size.

A constant variable that’s used to specify an array’s size must be initialized with a constant ex-
pression when it’s declared and cannot be modified thereafter.

C++ has no array bounds checking (p. 291). You should ensure that all array references remain
within the bounds of the array.

A static local variable in a function definition exists for the duration of the program but is vis-
ible only in the function body.

A program initializes static local arrays when their declarations are first encountered. If a stat-
ic array is not initialized explicitly by you, each element of that array is initialized to zero by
the compiler when the array is created.

Section 7.5 Range-Based for Statement

The new C++11 range-based for statement (p. 293) allows to manipulate all the elements of an
array without using a counter, thus avoiding the possibility of “stepping outside” the array and
eliminating the need for you to implement your own bounds checking.

The syntax of a range-based for statement is:

for (rangeVariableDeclaration : expression)
statement

where rangeVariableDeclaration has a type and an identifier, and expression is the array through
which to iterate. The type in the rangeVariableDeclaration must be consistent with the type of the
array’s elements. The identifier represents successive array elements on successive iterations of
the loop. You can use the range-based for statement with most of the C++ Standard Library’s
prebuilt data structures (commonly called containers), including classes array and vector.

You can use a range-based for statement to modify each element by making the rangeVariable-
Declaration a reference.

The range-based for statement can be used in place of the counter-controlled for statement
whenever code looping through an array does not require access to the element’s subscript.

322 Chapter 7 Class Templates array and vector; Catching Exceptions

Section 7.6 Case Study: Class GradeBook Using an array to Store Grades
¢ Class variables (static data members; p. 300) are shared by all objects of the class in which the
variables are declared.

e A static data member can be accessed within the class definition and the member-function def-
initions like any other data member.
* A public static data member can also be accessed outside of the class, even when no objects of

the class exist, using the class name followed by the scope resolution operator (: :) and the name
of the data member.

Section 7.7 Sorting and Searching arrays

e Sorting data—placing it into ascending or descending order—is one of the most important com-
puting applications.

 The process of finding a particular element of an array is called searching.

e C++ Standard Library function sort sorts an array’s elements into ascending order. The func-
tion’s arguments specify the range of elements that should be sorted. You'll see that function sort
can be used on other types of containers too.

e C++ Standard Library function binary_search determines whether a value is in an array. The
sequence of values must be sorted in ascending order first. The function’s first two arguments
represent the range of elements to search and the third is the search key—the value to locate. The
function returns a boo1 indicating whether the value was found.

Section 7.8 Multidimensional arrays
* Multidimensional arrays (p. 304) with two dimensions are often used to represent tables of val-
ues (p. 304) consisting of information arranged in rows and columns.

* arrays that require two subscripts to identify a particular element are called two-dimensional ar-
rays (p. 304). An array with 7 rows and 7 columns is called an -by-7 array (p. 304).

Section 7.9 Case Study: Class GradeBook Using a Two-Dimensional array
* In avariable declaration, the keyword auto (p. 306) can be used in place of a type name to infer
the variable’s type based on the variable’s initializer value.

Section 7.10 Introduction to C++ Standard Library Class Template vector
e C++ Standard Library class template vector (p. 314) represents a more robust alternative to ar-
rays featuring many capabilities that are not provided for C-style pointer-based arrays.

* By default, all the elements of an integer vector object are set to 0.
e A vector can be defined to store any data type using a declaration of the form

vector< type > name(size);

e Member function size (p. 317) of class template vector returns the number of elements in the
vector on which it’s invoked.

* The value of an element of a vector can be accessed or modified using square brackets ([1).

* Objects of standard class template vector can be compared directly with the equality (==) and
inequality (!=) operators. The assignment (=) operator can also be used with vector objects.

e A nonmodifiable /value is an expression that identifies an object in memory (such as an element
in a vector), but cannot be used to modify that object. A modifiable /value also identifies an ob-
ject in memory, but can be used to modify the object.

Self-Review Exercises 323

* An exception (p. 318) indicates a problem that occurs while a program executes. The name “ex-
ception” suggests that the problem occurs infrequently—if the “rule” is that a statement normally
executes correctly, then the problem represents the “exception to the rule.”

* Exception handling (p. 318) enables you to create fault-tolerant programs (p. 318) that can re-
solve exceptions.

* To handle an exception, place any code that might throw an exception (p. 319) in a try statement.

e The try block (p. 319) contains the code that might throw an exception, and the catch block
(p- 319) contains the code that handles the exception if one occurs.

e When a try block terminates, any variables declared in the try block go out of scope.

* A catch block declares a type and an exception parameter. Inside the catch block, you can use
the parameter’s identifier to interact with a caught exception object.

* An exception object’s what method (p. 319) returns the exception’s error message.

Self-Review Exercises
7.1 (Fill in the Blanks) Answer each of the following:

a) Lists and tables of values can be stored in or .

b) Anarray’s elements are related by the fact that they have the same and

¢) The number used to refer to a particular element of an array is called its

d) A(n) should be used to declare the size of an array, because it eliminates magic
numbers.

e) The process of placing the elements of an array in order is called the array.

f) The process of determining if an array contains a particular key value is called

the array.
g) An array that uses two subscripts is referred to as a(n) array.

7.2 (True or False) State whether the following are zrue or false. If the answer is false, explain why.
a) A given array can store many different types of values.
b) An array subscript should normally be of data type float.
c) If there are fewer initializers in an initializer list than the number of elements in the ar-
ray, the remaining elements are initialized to the last value in the initializer list.
d) Itsan error if an initializer list has more initializers than there are elements in the array.

7.3 (Write C++ Statements) Write one or more statements that perform the following tasks for
an array called fractions:
a) Definea constant variable arraySize to represent the size of an array and initialize it to 10.
b) Declarean array with arraySize elements of type double, and initialize the elements to 0.
c¢) Name the fourth element of the array.
d) Refer to array element 4.
e) Assign the value 1.667 to array element 9.
f) Assign the value 3.333 to the seventh element of the array.
g) Display array elements 6 and 9 with two digits of precision to the right of the decimal
point, and show the output that is actually displayed on the screen.
h) Display all the array elements using a counter-controlled for statement. Define the in-
teger variable i as a control variable for the loop. Show the output.
i) Display all the array elements separated by spaces using a range-based for statement.

7.4 (Two-Dimensional array Questions) Answer the following questions regarding an array
called table:
a) Declare the array to store int values and to have 3 rows and 3 columns. Assume that
the constant variable arraySize has been defined to be 3.

324

7.5

Chapter 7 Class Templates array and vector; Catching Exceptions

b) How many elements does the array contain?

c) Use a counter-controlled for statement to initialize each element of the array to the
sum of its subscripts.

d) Werite a nested for statement that displays the values of each element of array table in
tabular format with 3 rows and 3 columns. Each row and column should be labeled
with the row or column number. Assume that the array was initialized with an initial-
izer list containing the values from 1 through 9 in order. Show the output.

(Find the Error) Find the error in each of the following program segments and correct the error:
a) #include <iostreams;

b) = ; // arraySize was declared const
c) Assume that array< int, >b = {};
for (size_t i = 0; i <= b.sizeQ); ++i)
b[i1 =1;

d) Assume that a is a two-dimensional array of int values with two rows and two columns:
al[1, 1=35;

Answers to Self-Review Exercises

7.1

a) arrays, vectors. b)array name, type. c) subscript or index. d) constant variable.

e) sorting. f) searching. g) two-dimensional.

7.2

7.3

7.4

a) False. An array can store only values of the same type.
b) False. An array subscript should be an integer or an integer expression.
¢) False. The remaining elements are initialized to zero.

d) True.
a) const size_t = 10;
b) array< double, > fractions = { };

c) fractions[3]
d) fractions[4]
e) fractions[9] = :
f) fractions[6]
g) cout << fixed << setprecision(DE
cout << fractions[1 << << fractions[] << endl;
Outpur: 3.33 1.67
h) for (size_t i = 0; i < fractions.size(); ++i)
cout << << i << << fractions[i] << endl;
Output:
fractions[
fractions[

fractions[
fractions[
fractions[
fractions[
fractions[
fractions[

O O ©O O © O

.333
.0
fractions[.0
fractions[9] = 1.667
i) for (double element : fractions)

00 N O VT AW N RO

[T VR T T S '
1]

O O Ww O O O o O o

cout << element << g

a) array< array< int, >, > table;

Exercises 325

b) Nine.
c) for (size_t row = 0; row < table.size(); ++row)

for (size_t column = 0; column < table[row].size(); ++column)

table[row][column] = row + column;
d) cout << << endl;
for (size_t i =0; i < o+) {
cout << << i << o
for (size_t j =0; j < ; o+)

cout << setw(3) << table[i J[j] << ;
cout << endl;

}
Output:

[0] [11 [2]
[0] 1 2 3
[1] 4 5

[2] 7 8 9

7.5 a) Error: Semicolon at end of #include preprocessing directive.
Correction: Eliminate semicolon.
b) Error: Assigning a value to a constant variable using an assignment statement.
Correction: Initialize the constant variable in a const size_t arraySize declaration.
¢) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the loop-continuation condition to use < rather than <=.
d) Error: array subscripting done incorrectly.
Correction: Change the statementtoal[1 J[1] = 5;
Exercises
7.6 (Fill in the Blanks) Fill in the blanks in each of the following:
a) The names of the four elements of array p are , , and
b) Naming an array, stating its type and specifying the number of elements in the array
is called the array.
¢) When accessing an array element, by convention, the first subscript in a two-dimen-
sional array identifies an element’s and the second subscript identifies an el-
ement’s .
d) An m-by-n array contains rows, columns and elements.
e) The name of the element in row 3 and column 5 of array d is
7.7 (True or False) Determine whether each of the following is #rue or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the
array and the value of the particular element.
b) An array definition reserves space for an array.
¢) To indicate reserve 100 locations for integer array p, you write
pl 1;
d) A for statement must be used to initialize the elements of a 15-element array to zero.
e) Nested for statements must be used to total the elements of a two-dimensional array.
7.8 (Write C++ Statements) Write C++ statements to accomplish each of the following:

a) Display the value of element 6 of character array alphabet.

326 Chapter 7 Class Templates array and vector; Catching Exceptions

b) Input a value into element 4 of one-dimensional floating-point array grades.

¢) Initialize each of the 5 elements of one-dimensional integer array values to 8.

d) Total and display the elements of floating-point array temperatures of 100 elements.

e) Copy array a into the first portion of array b. Assume that both arrays contain doubles
and that arrays a and b have 11 and 34 elements, respectively.

f) Determine and display the smallest and largest values contained in 99-element floating-
point array w.

7.9 (Two-Dimensional array Questions) Consider a 2-by-3 integer array t.

a) Werite a declaration for t.

b) How many rows does t have?

¢) How many columns does t have?

d) How many elements does t have?

e) Write the names of all the elements in row 1 of t.

f) Werite the names of all the elements in column 2 of t.

g) Write a statement that sets the element of t in the first row and second column to zero.

h) Werite a series of statements that initialize each element of t to zero. Do not use a loop.

i) Write a nested counter-controlled for statement that initializes each element of t to zero.

j) Write a nested range-based for statement that initializes each element of t to zero.

k) Write a statement that inputs the values for the elements of t from the keyboard.

) Write a series of statements that determine and display the smallest value in array t.

m) Write a statement that displays the elements in row 0 of t.

n) Write a statement that totals the elements in column 2 of t.

0) Write a series of statements that prints the array t in neat, tabular format. List the column
subscripts as headings across the top and list the row subscripts at the left of each row.

7.10 (Salesperson Salary Ranges) Use a one-dimensional array to solve the following problem.
A company pays its salespeople on a commission basis. The salespeople each receive $200 per week
plus 9 percent of their gross sales for that week. For example, a salesperson who grosses $5000 in
sales in a week receives $200 plus 9 percent of $5000, or a total of $650. Write a program (using an
array of counters) that determines how many of the salespeople earned salaries in each of the fol-
lowing ranges (assume that each salesperson’s salary is truncated to an integer amount):

a) $200-299

b) $300-399

c) $400-499

d) $500-599

e) $600-699

f) $700-799

g) $800-899

h) $900-999

i) $1000 and over

7.11 (One-Dimensional array Questions) Write single statements that perform the following
one-dimensional array operations:
a) Initialize the 10 elements of integer array counts to zero.
b) Add 1 to each of the 15 elements of integer array bonus.
c) Read 12 values for the array of doubles named monthlyTemperatures from the keyboard.
d) Print the 5 values of integer array bestScores in column format.

7.12 (Find the Errors) Find the error(s) in each of the following statements:
a) Assume that a is an array of three ints.

cout << a[] << << a[] << << a[] << endl;

Exercises 327

b) array< double, 3 > f = { , : 5 };
c) Assume that d is an array of doubles with two rows and 10 columns.
dL 1, 91 = 3

7.13 (Duplicate Elimination with array) Use a one-dimensional array to solve the following
problem. Read in 20 numbers, each of which is between 10 and 100, inclusive. As each number is
read, validate it and store it in the array only if it isn’t a duplicate of a number already read. After
reading all the values, display only the unique values that the user entered. Provide for the “worst
case” in which all 20 numbers are different. Use the smallest possible array to solve this problem.

7.14 (Duplicate Elimination with vector) Reimplement Exercise 7.13 using a vector. Begin
with an empty vector and use its push_back function to add each unique value to the vector.

7.15 (Two-Dimensional array Initialization) Label the elements of a 3-by-5 two-dimensional
array sales to indicate the order in which they’re set to zero by the following program segment:
for (size_t row = 0; row < sales.size(); ++row)

for (size_t column = 0; column < sales[row].size(); ++column)
sales[row][column] = 0;

7.16 (Dice Rolling) Write a program that simulates the rolling of two dice. The sum of the two
values should then be calculated. [Voze: Each die can show an integer value from 1 to 6, so the sum
of the two values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 being the
least frequent sums.] Figure 7.26 shows the 36 possible combinations of the two dice. Your program
should roll the two dice 36,000 times. Use a one-dimensional array to tally the numbers of times
each possible sum appears. Print the results in a tabular format. Also, determine if the totals are rea-
sonable (i.e., there are six ways to roll a 7, so approximately one-sixth of all the rolls should be 7).

N
w
B
w
o

I 1231 4] 5] 6] 7
2 3|41 6]7]8
3 4|56 7] 89
4 [516| 7|8] 9] lo
5 (6|7 8] 9|lofiLtl
6] 89|10}]2

Fig. 7.26 | The 36 possible outcomes of rolling two dice.

7.17 (What Does This Code Do?) What does the following program do?

// Ex. 7.17: Ex07_17.cpp

// What does this program do?
#include <iostream>

#include <array>

using namespace std;

const size_t arraySize = ;
int whatIsThis(const array< 1int, > &, size_t); // prototype

N OB WN -

10 1int mainQ)
o {

12 array< int, >a=1{1,2,3,4,5,6,7,38,09, 1

328 Chapter 7 Class Templates array and vector; Catching Exceptions
13

14 int result = whatIsThis(a,);

15

16 cout << << result << endl;

17 } // end main

18

19 // What does this function do?
20 int whatIsThis(const array< int, > &b, size_t size)
21 {
22 if (size ==) // base case
23 return b[1;
24 else // recursive step

25 return b[size -] + whatIsThis(b, size -);

26 } // end function whatIsThis

7.18 (Craps Game Modification) Modify the program of Fig. 6.11 to play 1000 games of craps.

The program should keep track of the statistics and answer the following questions:

a) How many games are won on the 1% roll, 20d poll, ..., 20% roll, and after the 20t roll?

b) How many games are lost on the 1% roll, 20d o]l ..., 20t roll, and after the 20 roll?

¢) What are the chances of winning at craps? [Noze: You should discover that craps is one
of the fairest casino games. What do you suppose this means?]

d) What's the average length of a game of craps?

¢) Do the chances of winning improve with the length of the game?

7.19 (Converting vector Example of Section 7.10 to array) Convert the vector example of
Fig. 7.26 to use arrays. Eliminate any vector-only features.

7.20 (What Does This Code Do?) What does the following program do?

| // Ex. 7.20: Ex07_20.cpp

2 // What does this program do?

3 #include <jostream>

4 #include <array>

5 using namespace std;

6

7 const size_t = ;

8 void someFunction(const array< int, > &, size_t); // prototype
9

10 int main(Q)

11 {

12 array< int, arraySize >a=4{1, 2, 3, 4, 5,6, 7, &, 9, };

13

14 cout << << endl;

15 someFunction(a,)

16 cout << endl;

17 } // end main

18

19 // What does this function do?

20 void someFunction(const array< int, > &b, size_t current)
21 {

22 if (current < b.size())

23 {

24 someFunction(b, current +);

25 cout << b[current] << ;

26 } // end if

27 } // end function someFunction

Exercises 329

7.21 (Sales Summary) Use a two-dimensional array to solve the following problem. A company
has four salespeople (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson
passes in a slip for each different type of product sold. Each slip contains the following:

a) The salesperson number

b) The product number

¢) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all of the slips for last month is available. Write a program that will read all this information
for last month’s sales (one salesperson’s data at a time) and summarize the total sales by salesperson
by product. All totals should be stored in the two-dimensional array sales. After processing all the
information for last month, print the results in tabular format with each of the columns represent-
ing a particular salesperson and each of the rows representing a particular product. Cross total each
row to get the total sales of each product for last month; cross total each column to get the total
sales by salesperson for last month. Your tabular printout should include these cross totals to the
right of the totaled rows and to the bottom of the totaled columns.

7.22 (Knights Tour) One of the more interesting puzzlers for chess buffs is the Knight's Tour
problem. The question is this: Can the chess piece called the knight move around an empty chess-
board and touch each of the 64 squares once and only once? We study this intriguing problem in
depth in this exercise.

The knight makes L-shaped moves (over two in one direction then over one in a perpendicu-
lar direction). Thus, from a square in the middle of an empty chessboard, the knight can make
eight different moves (numbered 0 through 7) as shown in Fig. 7.27.

o 1 2 3 4 5 6 7
0
| 2 |
2 3 0
3 K
4 4 7
5 5 6
6
7

Fig. 7.27 | The eight possible moves of the knight.

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight's Tour by hand.
Put a 1 in the first square you move to, a 2 in the second square, a 3 in the third, etc.
Before starting the tour, estimate how far you think you’ll get, remembering that a full
tour consists of 64 moves. How far did you get? Was this close to your estimate?

b) Now let’s develop a program that will move the knight around a chessboard. The board
is represented by an 8-by-8 two-dimensional array board. Each of the squares is initial-
ized to zero. We describe each of the eight possible moves in terms of both their hori-
zontal and vertical components. For example, a move of type 0, as shown in Fig. 7.27,
consists of moving two squares horizontally to the right and one square vertically up-
ward. Move 2 consists of moving one square horizontally to the left and two squares
vertically upward. Horizontal moves to the left and vertical moves upward are indicated

330

Chapter 7 Class Templates array and vector; Catching Exceptions

with negative numbers. The eight moves may be described by two one-dimensional ar-
rays, horizontal and vertical, as follows:

horizontal[] = vertical[] =
horizontal[] = verticall[]
horizontal[] = vertical[] =
horizontal[] = verticall[]
horizontal[] = vertical[] =
horizontal[] = verticall[]
horizontal[] = vertical[] =
horizontal[] = verticall[] =

Let the variables currentRow and currentColumn indicate the row and column of
the knight’s current position. To make a move of type moveNumber, where moveNumber is
between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber 1];
currentColumn += horizontal[moveNumber 1;

Keep a counter that varies from 1 to 64. Record the latest count in each square the
knight moves to. Remember to test each potential move to see if the knight has already
visited that square, and, of course, test every potential move to make sure that the
knight does not land off the chessboard. Now write a program to move the knight
around the chessboard. Run the program. How many moves did the knight make?
After attempting to write and run a Knight's Tour program, you’ve probably developed
some valuable insights. We'll use these to develop a heuristic (or strategy) for moving
the knight. Heuristics do not guarantee success, but a carefully developed heuristic
greatly improves the chance of success. You may have observed that the outer squares
are more troublesome than the squares nearer the center of the board. In fact, the most
troublesome, or inaccessible, squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most
troublesome squares first and leave open those that are easiest to get to, so when the
board gets congested near the end of the tour, there will be a greater chance of success.

We may develop an “accessibility heuristic” by classifying each square according
to how accessible it’s then always moving the knight to the square (within the
knight’s L-shaped moves, of course) that is most inaccessible. We label a two-dimen-
sional array accessibility with numbers indicating from how many squares each
particular square is accessible. On a blank chessboard, each center square is rated as
8, each corner square is rated as 2 and the other squares have accessibility numbers of
3, 4 or 6 as follows:

3 4 4

NwWARADMDAWNDN
whoOOoOOO N
S O 00 0o
S O 0 0 0 0 O
S O 00 00O N
S O) 00 00O D
whoooo b~ w
NWwWARMDMDAWNDN

Now write a version of the Knight's Tour program using the accessibility heuristic.
At any time, the knight should move to the square with the lowest accessibility num-
ber. In case of a tie, the knight may move to any of the tied squares. Therefore, the tour
may begin in any of the four corners. [Noze: As the knight moves around the chess-
board, your program should reduce the accessibility numbers as more and more
squares become occupied. In this way, at any given time during the tour, each available
square’s accessibility number will remain equal to precisely the number of squares from

Exercises 331

which that square may be reached.] Run this version of your program. Did you get a
full tour? Now modify the program to run 64 tours, one starting from each square of
the chessboard. How many full tours did you get?

d) Write a version of the Knight's Tour program which, when encountering a tie between
two or more squares, decides what square to choose by looking ahead to those squares
reachable from the “tied” squares. Your program should move to the square for which
the next move would arrive at a square with the lowest accessibility number.

7.23 (Knight’s Tour: Brute Force Approaches) In Exercise 7.22, we developed a solution to the
Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates many so-
lutions and executes efficiently.

As computers continue increasing in power, we'll be able to solve more problems with sheer
computer power and relatively unsophisticated algorithms. This is the “brute force” approach to
problem solving.

a) Use random number generation to enable the knight to walk around the chessboard (in
its legitimate L-shaped moves, of course) at random. Your program should run one tour
and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now modify your
program to attempt 1000 tours. Use a one-dimensional array to keep track of the num-
ber of tours of each length. When your program finishes attempting the 1000 tours, it
should print this information in neat tabular format. What was the best result?

¢) Most likely, the preceding program gave you some “respectable” tours, but no full tours.
Now “pull all the stops out” and simply let your program run until it produces a full
tour. [Caution: This version of the program could run for hours on a powerful comput-
er.] Once again, keep a table of the number of tours of each length, and print this table
when the first full tour is found. How many tours did your program attempt before pro-
ducing a full tour? How much time did it take?

d) Compare the brute force version of the Knight's Tour with the accessibility heuristic
version. Which required a more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer power? Could we be certain
(in advance) of obtaining a full tour with the accessibility heuristic approach? Could we
be certain (in advance) of obtaining a full tour with the brute force approach? Argue the
pros and cons of brute force problem solving in general.

7.24 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated:
Is it possible to place eight queens on an empty chessboard so that no queen is “attacking” any other,
i.e., no two queens are in the same row, the same column, or along the same diagonal? Use the think-
ing developed in Exercise 7.22 to formulate a heuristic for solving the Eight Queens problem. Run
your program. [Hint: It’s possible to assign a value to each square of the chessboard indicating how
many squares of an empty chessboard are “eliminated” if a queen is placed in that square. Each of
the corners would be assigned the value 22, as in Fig. 7.28. Once these “elimination numbers” are
placed in all 64 squares, an appropriate heuristic might be: Place the next queen in the square with
the smallest elimination number. Why is this strategy intuitively appealing?]

7.25 (Eight Queens: Brute Force Approaches) In this exercise, you'll develop several brute-force
approaches to solving the Eight Queens problem introduced in Exercise 7.24.
a) Solve the Eight Queens exercise, using the random brute force technique developed in
Exercise 7.23.
b) Use an exhaustive technique, i.e., try all possible combinations of eight queens on the
chessboard.
¢) Why do you suppose the exhaustive brute force approach may not be appropriate for
solving the Knight's Tour problem?
d) Compare and contrast the random and exhaustive brute force approaches in general.

332 Chapter 7 Class Templates array and vector; Catching Exceptions

Fig. 7.28 | The 22 squares eliminated by placing a queen in the upper-left corner.

7.26 (Knights Tour: Closed-Tour Test) In the Knight's Tour, a full tour occurs when the knight
makes 64 moves, touching each square of the board once and only once. A closed tour occurs when
the 64™ move is one move away from the location in which the knight started the tour. Modify the
Knight’s Tour program you wrote in Exercise 7.22 to test for a closed tour if a full tour has occurred.

7.27 (The Sieve of Eratosthenes) A prime integer is any integer that is evenly divisible only by
itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It operates as follows:
a) Create an array with all elements initialized to 1 (true). array elements with prime sub-
scripts will remain 1. All other array elements will eventually be set to zero. You'll ig-

nore elements 0 and 1 in this exercise.

b) Starting with array subscript 2, every time an array element is found whose value is 1,
loop through the remainder of the array and set to zero every element whose subscript
is a multiple of the subscript for the element with value 1. For array subscript 2, all el-
ements beyond 2 in the array that are multiples of 2 will be set to zero (subscripts 4, 6,
8, 10, etc.); for array subscript 3, all elements beyond 3 in the array that are multiples
of 3 will be set to zero (subscripts 6, 9, 12, 15, etc.); and so on.

When this process is complete, the array elements that are still set to one indicate that the subscript is
a prime number. These can then be printed. Write a program that uses an array of 1000 elements to
determine and print the prime numbers between 2 and 999. Ignore element 0 of the array.

Recursion Exercises

7.28 (Palindromes) A palindrome is a string that is spelled the same way forward and backward.
Examples of palindromes include “radar” and “able was i ere i saw elba.” Write a recursive function
testPalindrome that returns true if a string is a palindrome, and false otherwise. Note that like
an array, the square brackets ([1) operator can be used to iterate through the characters in a string.

7.29 (Eight Queens) Modify the Eight Queens program you created in Exercise 7.24 to solve the
problem recursively.

7.30 (Print an array) Write a recursive function printArray that takes an array, a starting sub-
script and an ending subscript as arguments, returns nothing and prints the array. The function
should stop processing and return when the starting subscript equals the ending subscript.

7.31 (Print a String Backward) Write a recursive function stringReverse that takes a string
and a starting subscript as arguments, prints the string backward and returns nothing. The function
should stop processing and return when the end of the string is encountered. Note that like an array
the square brackets ([1) operator can be used to iterate through the characters in a string.

7.32 (Find the Minimum Value in an array) Write a recursive function recursiveMinimum that
takes an integer array, a starting subscript and an ending subscript as arguments, and returns the

Making a Difference 333

smallest element of the array. The function should stop processing and return when the starting
subscript equals the ending subscript.

7.33 (Maze Traversal) The grid of hashes (#) and dots (.) in Fig. 7.29 is a two-dimensional built-
in array representation of a maze. In the two-dimensional built-in array, the hashes represent the
walls of the maze and the dots represent squares in the possible paths through the maze. Moves can
be made only to a location in the built-in array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit (assum-
ing that there is an exit). If there is not an exit, you'll arrive at the starting location again. Place your
right hand on the wall to your right and begin walking forward. Never remove your hand from the
wall. If the maze turns to the right, you follow the wall to the right. As long as you do not remove
your hand from the wall, eventually you'll arrive at the exit of the maze. There may be a shorter path
than the one you've taken, but you are guaranteed to get out of the maze if you follow the algorithm.

#HEHHEHAERERHRERA

#0000 # 0000 #
Lo F R RRRERE L #
#HEHEOH# ... # L #
#.0. . L #EHEO# L
#E#HEHEH KK # L #
. 0.0# O # O # O # O
#H# O # O # L # L # L #
%75 0 0 000000
#HEHFHEHRHE O HFEH L #
[2
EHEAEREAERERRRES

Fig. 7.29 | Two-dimensional built-in array representation of a maze.

Write recursive function mazeTraverse to walk through the maze. The function should
receive arguments that include a 12-by-12 built-in array of chars representing the maze and the
starting location of the maze. As mazeTraverse attempts to locate the exit from the maze, it should
place the character X in each square in the path. The function should display the maze after each
move, so the user can watch as the maze is solved.

7.34 (Generating Mazes Randomly) Write a function mazeGenerator that randomly produces a
maze. The function should take as arguments a two-dimensional 12-by-12 built-in array of chars
and pointers to the int variables that represent the row and column of the maze’s entry point. Try
your function mazeTraverse from Exercise 7.33, using several randomly generated mazes.

Making a Difference

7.35 (Polling) The Internet and the web enable people to network, join a cause, and so on. The
presidential candidates in 2012 used the Internet to get out their messages and raise money. In this
exercise, you'll write a polling program that allows users to rate five social-consciousness issues from 1
to 10 (most important). Pick five causes (e.g., political issues, global environmental issues). Use a one-
dimensional string array topics to store the causes. To summarize the survey responses, use a 5-row,
10-column two-dimensional array responses (of type int), each row corresponding to an element in
the topics array. When the program runs, it should ask the user to rate each issue. Have your friends
and family respond to the survey. Then have the program display a summary of the results, including:

a) A tabular report with the five topics down the left side and the 10 ratings across the top,

listing in each column the number of ratings received for each topic.

b) To the right of each row, show the average of the ratings for that issue.

¢) Which issue received the highest point total? Display both the issue and the point total.

d) Which issue received the lowest point total? Display both the issue and the point total.

Pointers

Addresses are given to us to
conceal our whereabouts.
—Saki (H. H. Munro)

By indirection find direction
out.
—William Shakespeare

Many things, having full
reference

10 one consent, may work
contrariously.

—William Shakespeare

You will find it a very good
practice always to verify your
references, sir!

—Dr. Routh

Objectives
In this chapter you'll:

m Learn what pointers are.

m Learn the similarities and
differences between pointers
and references.

= Use pointers to pass
arguments to functions by
reference.

m Understand the close
relationships between
pointers and built-in arrays.

m Use pointer-based strings.
m Use built-in arrays.

m Use C++11 capabilities,
including nu11ptr and
Standard Library functions
begin and end.

8.1 Introduction 335

8.1 Introduction 8.63 Constant Pointer to Nonconstant Data
8.2 Pointer Variable Declarations and 864 Constant Pointer to Constant Data
Initialization 8.7 sizeof Operator
8.3 Pointer Operators 8.8 Pointer Expressions and Pointer
Arithmetic

8.4 Pass-by-Reference with Pointers
8.5 Built-In Arrays

. . : Built-In Arrays
8.6 Using const with Pointers

8.6.1 Nonconstant Pointer to Nonconstant 8.10 Pointer-Based SHinSs
Data 8.11 Wrap-Up

8.6.2 Nonconstant Pointer to Constant Data

8.9 Relationship Between Pointers and

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Computer

8.1 Introduction

This chapter discusses pointers—one of the most powerful, yet challenging to use, C++ ca-
pabilities. Our goals here are to help you determine when it’s appropriate to use pointers,
and show how to use them correctly and responsibly.

In Chapter 6, we saw that references can be used to perform pass-by-reference.
Pointers also enable pass-by-reference and can be used to create and manipulate dynamic
data structures that can grow and shrink, such as linked lists, queues, stacks and trees. This
chapter explains basic pointer concepts. Chapter 19 presents examples of creating and
using dynamic data structures that are implemented with pointers.

We also show the intimate relationship among built-in arrays and pointers. C++
inherited built-in arrays from the C programming language. As we saw in Chapter 7, the
C++ Standard Library classes array and vector provide implementations of arrays as full-
fledged objects—in fact, array and vector each store their elements in built-in arrays. /n
new software development projects, you should favor array and vector objects to built-in
arrays.

Similarly, C++ actually offers two types of strings—string class objects (which we've
been using since Chapter 3) and C-style, pointer-based strings (C strings). This chapter
briefly introduces C strings to deepen your knowledge of pointers and built-in arrays. C
strings were widely used in older C and C++ software. We discuss C strings in depth in
Appendix F. In new software development projects, you should favor string class objects.

We'll examine the use of pointers with class objects in Chapter 12, where we’ll see that
the so-called “polymorphic processing” associated with object-oriented programming is
performed with pointers and references.

8.2 Pointer Variable Declarations and Initialization

Indirection

Pointer variables contain memory addresses as their values. Normally, a variable directly con-
tains a specific value. A pointer contains the memory addyess of a variable that, in turn, con-
tains a specific value. In this sense, a variable name directly references a value, and a
pointer indirectly references a value (Fig. 8.1). Referencing a value through a pointer is

3

336 Chapter 8 Pointers

called indirection. Diagrams typically represent a pointer as an arrow from the variable
that contains an address to the variable located at that address in memory.

count
7 count directly references a
variable that contains the value 7
countPtr count

Pointer countPtr indirectly
—» 7 references a variable that
contains the value 7

Fig. 8.1 | Directly and indirectly referencing a variable.

Declaring Pointers
Pointers, like any other variables, must be declared before they can be used. For example,
for the pointer countPtr in Fig. 8.1, the declaration

int *countPtr, count;

declares the variable countPtr to be of type int * (i.e., a pointer to an int value) and is
read (right to lef), “countPtr is a pointer to int.” Also, variable count in the preceding
declaration is declared to be an int, nor a pointer to an int. The * in the declaration ap-
plies only to countPtr. Each variable being declared as a pointer must be preceded by an
asterisk (*). For example, the declaration

double *xPtr, *yPtr;

indicates that both xPtr and yPtr are pointers to double values. When * appears in a dec-
laration, it’s 7ot an operator; rather, it indicates that the variable being declared is a point-
er. Pointers can be declared to point to objects of any data type.

\ Assuming that the * used to declare a pointer distributes to all names in a declaration’s
comma-separated list of variables can lead to errors. Each pointer must be declared with
the * prefixed to the name (with or without spaces in between). Declaring only one vari-
able per declaration helps avoid these types of errors and improves program readability.

-"_;zl ! Common Programming Error 8.1

.

w75 Good Programming Practice 8.1
Although it’s not a requirement, including the letters Ptr in a pointer variable name
makes it clear that the variable is a pointer and that it must be handled accordingly.

B oW

Initializing Pointers

Pointers should be initialized to nu11ptr (new in C++11) or an address of the correspond-
ing type either when they're declared or in an assignment. A pointer with the value
nullptr “points to nothing” and is known as a null pointer. From this point forward,
when we refer to a “null pointer” we mean a pointer with the value nul1ptr.

== Error-Prevention Tip 8.1

= | Initialize all pointers to prevent pointing to unknown or uninitialized areas of memory.

[~

8.3 Pointer Operators 337

Null Pointers Prior to C++11

In earlier versions of C++, the value specified for a null pointer was 0 or NULL. NULL is de-
fined in several standard library headers to represent the value 0. Initializing a pointer to
NULL is equivalent to initializing a pointer to 0, but prior to C++11, 0 was used by conven-
tion. The value 0 is the only integer value that can be assigned directly to a pointer variable
without first casting the integer to a pointer type.

8.3 Pointer Operators
Address (& Operator

The address operator (&) is a unary operator that obrains the memory address of its operand.
For example, assuming the declarations

int y = 5; // declare variable y
int *yPtr = nullptr; // declare pointer variable yPtr

the statement
yPtr = &y; // assign address of y to yPtr

assigns the address of the variable y to pointer variable yPtr. Then variable yPtr is said to
“point to” y. Now, yPtr indirectly references variable y’s value. The use of the & in the pre-
ceding statement is 70t the same as the use of the & in a reference variable declaration, which
is always preceded by a data-type name. When declaring a reference, the & is part of the
type. In an expression like &y, the & is the address operator.

Figure 8.2 shows a representation of memory after the preceding assignment. The
“pointing relationship” is indicated by drawing an arrow from the box that represents the
pointer yPtr in memory to the box that represents the variable y in memory.

Figure 8.3 shows another pointer representation in memory with integer variable y
stored at memory location 600000 and pointer variable yPtr stored at location 500000. The
operand of the address operator must be an /value—rthe address operator cannot be applied
to constants or to expressions that result in temporary values (like the results of calculations).

yPtr y

——» 5

Fig. 8.2 | Graphical representation of a pointer pointing to a variable in memory.

yPtr y

Tocation Tocation
500000 600000 600000 >

Fig. 8.3 | Representation of y and yPtr in memory.

Indirection (*) Operator

The unary * operator—commonly referred to as the indirection operator or dereferenc-
ing operator—returns an lvalue representing the object to which its pointer operand points.
For example (referring again to Fig. 8.2), the statement

338 Chapter 8 Pointers

cout << *yPtr << endl;

displays the value of variable y, namely, 5, just as the statement

cout << y << endl;

would. Using * in this manner is called dereferencing a pointer. A dereferenced pointer may
also be used on the /¢ff side of an assignment statement, as in

*yPtr = 9;

which would assign 9 to y in Fig. 8.3. The dereferenced pointer may also be used to receive
an input value as in

cin >> *yPtr;

which places the input value in y.

i, Common Programming Error 8.2

' 'f Dereferencing an uninitialized pointer results in undefined behavior that could cause a

SN fatal execution-time error. This could also lead to accidentally modifying important data,
allowing the program to run to completion, possibly with incorrect results.

= Error-Prevention Tip 8.2
g' | Dereferencing a null pointer results in undefined behavior and typically is a fatal execu-
tion-time error, so you should ensure that a pointer is not null before dereferencing it.

Using the Address (&) and Indirection (*) Operators

The program in Fig. 8.4 demonstrates the & and * pointer operators. Memory locations are
output by << in this example as hexadecimal (i.c., base-16) integers. (See Appendix D, Num-
ber Systems, for more information on hexadecimal integers.) The memory addresses output
by this program are platform dependent, so you may get different results when you run the
program. The address of a (line 11) and the value of aPtr (line 12) are identical in the out-
put, confirming that the address of a is indeed assigned to the pointer variable aPtr.

1 // Fig. 8.4: fig08_04.cpp

2 // Pointer operators & and *.

3 #include <iostream>

4 using namespace std;

5

6 1int main()

7 {

8 int a = 7; // assigned 7 to a

9 int *aPtr = &a; // initialize aPtr with the address of int variable a
10

11 cout << << &a

12 << << aPtr;

13 cout << << a

14 << << *aPtr << endl;

I5 } // end main

Fig. 8.4 | Pointer operators & and *. (Part | of 2.)

8.4 Pass-by-Reference with Pointers 339

The address of a is 002DFD80
The value of aPtr is 002DFD80

The value of a is 7
The value of *aPtr is 7

Fig. 8.4 | Pointer operators & and *. (Part 2 of 2.)

Precedence and Associativity of the Operators Discussed So Far
Figure 8.5 lists the precedence and associativity of the operators introduced to this point.
The address (&) and dereferencing operator (*) are unary operators on the fourth level.

Operators Associativity Type

O left to right primary
[See caution in Fig. 2.10
regarding grouping parentheses.|

O [1 ++ -- static_cast<gype>(operand) left to right postfix
e e right to left unary (prefix)
/% left to right multiplicative
+ - left to right additive

<< >> left to right insertion/extraction
< <= > >= left to right relational
= left to right equality

&& left to right logical AND
I left to right logical OR

23 right to left conditional

= 4= = F= /= %= right to left assignment

, left to right comma

Fig. 8.5 | Operator precedence and associativity of the operators discussed so far.

8.4 Pass-by-Reference with Pointers

There are three ways in C++ to pass arguments to a function—pass-by-value, pass-by-ref-
erence with reference arguments and pass-by-reference with pointer arguments.
Chapter 6 compared and contrasted pass-by-reference with reference arguments and pass-
by-value. Here, we explain pass-by-reference with pointer arguments.

Chapter 6 showed that return can return one value from a called function or simply
return control. You also learned that arguments can be passed to a function using reference
parameters, which enable the called function to modify the original values of the arguments in
the caller. Reference parameters also enable programs to pass large data objects to a function
and avoid the overhead of passing the objects by value (which, of course, copies the object).
Pointers, like references, also can be used to modify one or more variables in the caller or to
pass pointers to large data objects to avoid the overhead of passing the objects by value.

340 Chapter 8 Pointers

You can use pointers and the indirection operator (*) to accomplish pass-by-reference
(exactly as pass-by-reference is done in C programs—C does not have references). When
calling a function with an argument that should be modified, the address of the argument
is passed. This is normally accomplished by applying the address operator (&) to the name
of the variable whose value will be modified.

An Example of Pass-By-Value

Figure 8.6 and Fig. 8.7 present two versions of a function that cubes an integer. Figure 8.6
passes variable number by value (line 14) to function cubeByValue (lines 19-22), which cubes
its argument and passes the new value back to main using a return statement (line 21). The
new value is assigned to number (line 14) in main. The calling function has the opportunity
to examine the function call’s result before modifying variable number’s value. For example,
we could have stored the result of cubeByValue in another variable, examined its value and
assigned the result to number only after determining that the returned value was reasonable.

1 // Fig. 8.6: fig08_06.cpp

2 // Pass-by-value used to cube a variable’s value.

3 #include <iostream>

4 using namespace std;

5

6 1int cubeByValue(int); // prototype

7

8 1int main()

9 {

10 int number = 5;

11

12 cout << << number;

13

14 number = cubeByValue(number); // pass number by value to cubeByValue
15 cout << << number << endl;
16 } // end main

17

18 // calculate and return cube of integer argument

19 int cubeByValue(int n)
20 {
21 return n * n * n; // cube Tocal variable n and return result
22 } // end function cubeByValue

The original value of number is 5
The new value of number is 125

Fig. 8.6 | Pass-by-value used to cube a variable’s value.

An Example of Pass-By-Reference with Pointers

Figure 8.7 passes the variable number to function cubeByReference using pass-by-reference
with a pointer argument (line 15)—the address of number is passed to the function. Function
cubeByReference (lines 21-24) specifies parameter nPtr (a pointer to int) to receive its ar-
gument. The function wuses the dereferenced pointer o cube the value to which nPtr points
(line 23). This directly changes the value of humber in main (line 11). Line 23 is equivalent to

*nPtr = (*nPtr) * (*nPtr) * (*nPtr); // cube *nPtr

8.4 Pass-by-Reference with Pointers 341

1 // Fig. 8.7: fig08_07.cpp

2 // Pass-by-reference with a pointer argument used to cube a
3 // variable’s value.

4 #include <iostream>

5 using namespace std;

6

7 void cubeByReference(int *); // prototype

8

9 dint main()

10 {

11 int number = 5;

12

13 cout << << number;

14

15 cubeByReference(&number); // pass number address to cubeByReference
16

17 cout << << number << endl;
18 } // end main

19
20 // calculate cube of *nPtr; modifies variable number in main
21 void cubeByReference(int *nPtr)
22 {
23 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
24 1} // end function cubeByReference

The original value of number is 5
The new value of number is 125

Fig. 8.7 | Pass-by-reference with a pointer argument used to cube a variable’s value.

A function receiving an address as an argument must define a pointer parameter to
receive the address. For example, the header for function cubeByReference (line 21) spec-
ifies that cubeByReference receives the address of an int variable (i.e., a pointer to an int)
as an argument, stotes the address in nPtr and does 7oz return a value.

Function cubeByReference’s prototype (line 7) contains int * in parentheses. As
with other types, it isn’t necessary to include the names of pointer parameters in proto-
types. Parameter names included for documentation purposes are ignored by the compiler.

Insight: All Arguments Are Passed By Value

In C++, all arguments are always passed by value. Passing a variable by reference with a
pointer does not actually pass anything by reference—a pointer to that variable is passed by
value and is copied into the function’s corresponding pointer parameter. The called func-
tion can then access that variable in the caller simply by dereferencing the pointer, thus
accomplishing pass-by-reference.

Graphical Analysis of Pass-By-Value and Pass-By-Reference

Figures 8.8-8.9 analyze graphically the execution of Fig. 8.6 and Fig. 8.7, respectively. In
the diagrams, the values in blue rectangles above a given expression or variable represent
the value of that expression or variable. Each diagram’s right column shows functions
cubeByValue (Fig. 8.6) and cubeByReference (Fig. 8.7) only when they’re executing.

342 Chapter 8 Pointers

Step |: Before main calls cubeByValue:

:‘:nt main() number
int number = 5; 5
number = cubeByValue(number);
}
Step 2: After cubeByValue receives the call:
int main(Q) number int cubeByValue(int n)
{ {
int number = 5; 5 return n * n * n;

number = cubeByValue(number);

Step 3: After cubeByVaTlue cubes parameter n and before cubeByVaTlue returns to main:

int main(Q) number int cubeByValue(int n)
{ { 125

int number = 5; 5 return n * n * n;

number = cubeByValue(number);

Step 4: After cubeByValue returns to main and before assigning the result to number:

int mainQ number

{

int number = 5; 5

125

number = cubeByValue(number);

Step 5: After main completes the assignment to number:

int mainQ number
{
int number = 5; 125
125
number = cubeByValue(number);
}

Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6.

8.4 Pass-by-Reference with Pointers

Step |: Before main calls cubeByReference

int mainQ)

{

number

5

int number = 5;

cubeByReference(&number);

Step 2: After cubeByReference receives the call and before

*nPtr is cubed:

int main()

{

number

int number = 5; 5

\\\

cubeByReference(&number);

void cubeByReference(int *nPtr)
{
*nPtr = *nPtr * *nPtr * *nPtr;

}
nPtr

call establishes this pointer

5%5:

\\\

cubeByReference(&number);

Step 3: Before*nPtr is assigned the result of the calculation 5 *
lnt main() number
int number = 5; 5

void cubeByReference(int *nPtr)
{ 125
*nPtr = *nPtr * *nPtr * *nPtr;

nPtr

Step 4: After *nPtr is assigned 125 and before program control

returns to main:

int mainQ)

{

number

int number = 5; 125

h\

cubeByReference(&number);

void cubeByReference(int *nPtr)
{125

*nPtr = *nPtr * *nPtr * *nPtr;
nPtr

called function modifies caller’s
variable

Step 5: After cubeByReference returns to main

int main()

{

number

int number = 5; 125

cubeByReference(&number);

Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the program of Fig. 8.7.

343

3

344 Chapter 8 Pointers

8.5 Built-In Arrays

In Chapter 7, we used the array class template to represent fixed-size lists and tables of val-
ues. We also used the vector class template, which is similar to array, but can also grow
(or shrink as you'll see in Chapter 15) dynamically to accommodate more or fewer ele-
ments. Here we present built-in arrays, which are also fixed-size data structures.

Declaring a Built-In Array
To specify the type of the elements and the number of elements required by a built-in ar-
ray, use a declaration of the form:

type arrayNamel arraySize 1;

The compiler reserves the appropriate amount of memory. The arraySize must be an inte-
ger constant greater than zero. For example, to tell the compiler to reserve 12 elements for
built-in array of ints named c, use the declaration

int c[1; // c is a built-in array of 12 integers

Accessing a Built-In Array’s Elements

As with array objects, you use the subscript ([]) operator to access the individual elements
of a built-in array. Recall from Chapter 7 that the subscript ([1) operator does nor provide
bounds checking for array objects—this is also true for built-in arrays.

Initializing Built-In Arrays
You can initialize the elements of a built-in array using an initializer list. For example,

int n[] = {)) ’) };

creates a built-in array of five ints and initializes them to the values in the initializer list.
If you provide fewer initializers than the number of elements, the remaining elements are
value initialized—fundamental numeric types are set to 0, bools are set to false, pointers
are set to nul1ptr and class objects are initialized by their default constructors. If you pro-
vide too many initializers a compilation error occurs. The new C++11 list-initialization
syntax that we introduced in Chapter 4 is based on the built-in array initializer-list syntax.

If a built-in array’s size is omitted from a declaration with an initializer list, the com-
piler sizes the built-in array to the number of elements in the initializer list. For example,

int n[] = { ’)) ’ };

creates a five-element array.

<= Error-Prevention Tip 8.3

" | Always specify a built-in array’s size, even when providing an initializer list. This enables
the compiler to ensure that you do not provide too many initializers.

Passing Built-In Arrays to Functions
The value of a built-in array’s name is implicitly convertible to the address of the built-in arrays
first element. So arrayName is implicitly convertible to &arrayName[0]. For this reason,

8.5 Built-In Arrays 345

you don’t need to take the address (&) of a built-in array to pass it to a function—you sim-
ply pass the built-in array’s name. As you saw in Section 8.4, a function that receives a
pointer to a variable in the caller can modify that variable in the caller. For built-in arrays,
this means that the called function can modify #// the elements of a built-in array in the
caller—unless the function precedes the corresponding built-in array parameter with
const to indicate that the elements should 707 be modified.

449 Software Engineering Observation 8.1
* Applying the const type qualifier to a built-in array parameter in a function definition
I8 10 prevent the original built-in array from being modified in the function body is another
example of the principle of least privilege. Functions should not be given the capability ro

modify a built-in array unless it’s absolutely necessary.

Declaring Built-In Array Parameters
You can declare a built-in array parameter in a function header, as follows:

int sumElements(const int values[], const size_t numberOfElements)

which indicates that the function’s first argument should be a one-dimensional built-in ar-
ray of ints that should 7oz be modified by the function. Unlike array objects, built-in ar-
rays don’t know their own size, so a function that processes a built-in array should have
parameters to receive both the built-in array and its size.

The preceding header can also be written as:

int sumElements(const int *values, const size_t numberOfElements)

The compiler does not differentiate between a function thar receives a pointer and a function
that receives a built-in array. This, of course, means that the function must “know” when
it’s receiving a built-in array or simply a single variable that’s being passed by reference.
When the compiler encounters a function parameter for a one-dimensional built-in array
of the form const int values[], the compiler converts the parameter to the pointer no-
tation const int *values (that is, “values is a pointer to an integer constant”). These
forms of declaring a one-dimensional built-in array parameter are interchangeable—for
clarity you should use the [] notation when the function expects a built-in array argument.

C++11: Standard Library Functions begin and end
In Section 7.7, we showed how to sort an array object with the C++ Standard Library
function sort. We sorted an array of strings called colors as follows:

sort(colors.begin(), colors.end()); // sort contents of colors

The array class’s begin and end functions specified that the entire array should be sorted.
Function sort (and many other C++ Standard Library functions) can also be applied to
built-in arrays. For example, to sort the built-in array n shown earlier in this section, you
can write:

sort(begin(n), end(n)); // sort contents of built-in array n

C++11’s new begin and end functions (from header <iterator>) each receive a built-in
array as an argument and return a pointer that can be used to represent ranges of elements
to process in C++ Standard Library functions like sort.

3

346 Chapter 8 Pointers

Built-In Array Limitations
Built-in arrays have several limitations:

* They cannor be compared using the relational and equality operators—you must
use a loop to compare two built-in arrays element by element.

o They cannot be assigned to one another.

» They dont know their own size—a function that processes a built-in array typically
receives both the built-in array’s name and its size as arguments.

o They don’t provide automatic bounds checking—you must ensure that array-access
expressions use subscripts that are within the built-in array’s bounds.

Objects of class templates array and vector are safer, more robust and provide more ca-
pabilities than built-in arrays.

Sometimes Built-In Arrays Are Required

In contemporary C++ code, you should use the more robust array (or vector) objects to
represent lists and tables of values. However, there are cases in which built-in arrays must
be used, such as processing a program’s command-line arguments. You supply command-
line arguments to a program by placing them after the program’s name when executing it
from the command line. Such arguments typically pass options to a program. For example,
on a Windows computer, the command

dir /p

uses the /p argument to list the contents of the current directory, pausing after each screen
of information. Similarly, on Linux or OS X, the following command uses the -1a argu-
ment to list the contents of the current directory with details about each file and directory:

1s -1la

Command-line arguments are passed to main as a built-in array of pointer-based strings
(Section 8.10). Appendix F shows how to process command-line arguments.

8.6 Using const with Pointers

Recall that const enables you to inform the compiler that the value of a particular variable
should 7oz be modified. Many possibilities exist for using (or 7oz using) const with func-
tion parameters, so how do you choose the most appropriate? Let the principle of least priv-
ilege be your guide. Always give a function enough access to the data in its parameters to
accomplish its specified task, but no more. This section discusses how to combine const
with pointer declarations to enforce the principle of least privilege.

Chapter 6 explained that when an argument is passed by value, a copy of the argument
is passed to the function. If the copy is modified in the called function, the original value
in the caller does not change. In some instances, even the copy of the argument’s value
should 7oz be altered in the called function.

Consider a function that takes a pointer to the initial element of a built-in array and
the array’s size as arguments and subsequently displays the built-in array’s elements. Such
a function should loop through the elements and output each individually. The built-in
array’s size is used in the function’s body to determine the highest subscript so the loop
can terminate when the displaying completes. The size does not need to change in the

8.6 Using const with Pointers 347

function body, so it should be declared const to ensure that it will not change. Because the
built-in array is only being displayed, it, too, should be declared const. This is especially
important because built-in arrays are always passed by reference and could easily be
changed in the called function. An attempt to modify a const value is a compilation error.

i Software Engineering Observation 8.2
!* If a value does not (or should not) change in the body of a function to which it’s passed,
I8 the parameter should be declared const.
< Error-Prevention Tip 8.4
= Before using a function, check its function prototype to determine the parameters that it
can and cannot modify.

[~

There are four ways to pass a pointer to a function: a nonconstant pointer to nonconstant
data, a nonconstant pointer to constant data (Fig. 8.10), a constant pointer to nonconstant
data (Fig. 8.11) and a constant pointer to constant data (Fig. 8.12). Each combination pro-
vides a different level of access privilege.

8.6.1 Nonconstant Pointer to Nonconstant Data

The highest access is granted by a nonconstant pointer to nonconstant data—the daza can
be modified through the dereferenced pointer, and the pointer can be modified to point to
other data. Such a pointer’s declaration (e.g., int *countPtr) does not include const.

8.6.2 Nonconstant Pointer to Constant Data

A nonconstant pointer to constant data is a pointer that can be modified to point to any
data item of the appropriate type, but the data to which it points cannot be modified
through that pointer. Such a pointer might be used to receive a built-in array argument to
a function that should be allowed to read the elements, but 7o modify them. Any attempt
to modify the data in the function results in a compilation error. The declaration for such
a pointer places const to the /eff of the pointer’s type, as in

const int *countPtr;

The declaration is read from right to lefi as “countPtr is a pointer to an integer constant”
or more precisely, “countPtr is a non-constant pointer to an integer constant.”

Figure 8.10 demonstrates GNU C++’s compilation error message produced when
attempting to compile a function that receives a nonconstant pointer to constant data, then
tries to use that pointer to modify the data.

// Fig. 8.10: fig08_10.cpp
// Attempting to modify data through a
// nonconstant pointer to constant data.

void f(const int *); // prototype

int main(Q)

{

O~NONUND WN -

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to const data. (Part | of 2.)

348 Chapter 8 Pointers

9 int y = 0;

10

11 fC&y); // f will attempt an illegal modification
12 } // end main

13

14 // constant variable cannot be modified through xPtr
15 void f(const int *xPtr)

16 {

17 *xPtr = 100; // error: cannot modify a const object
18 } // end function f

GNU C++ compiler error message:

fig08_10.cpp: In function ‘void f(const int*)’:
fi908_10.cpp:17:12: error: assignment of read-only location ‘* xPtr’

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to const data. (Part 2 of 2.)

When a function is called with a built-in array as an argument, its contents are effec-
tively passed by reference because the built-in array’s name is implicitly convertible to the
address of the built-in array’s first element. However, by default, objects such as arrays and
vectors are passed by value—a copy of the entire object is passed. This requires the execution-
time overhead of making a copy of each data item in the object and storing it on the func-
tion call stack. When a pointer to an object is passed, only a copy of the address of the
object must be made—the object itself is not copied.

oy Performance Tip 8.1
L [f'they do not need to be modified by the called function, pass large objects using pointers
— to constant data or references to constant data, to obtain the performance benefits of pass-

by-reference and avoid the copy overhead of pass-by-value.

Passing large objects using pointers to constant data, or references to constant data offers

i« Software Engineering Observation 8.3
£ «.i g’ the security of pass-by-value.

Use pass-by-value to pass fundamental-type arguments (e.g., ints, doubles, etc.) to a
55 function unless the caller explicitly requires that the called function be able to directly
modify the value in the caller. This is another example of the principle of least privilege.

-t-ih Software Engineering Observation 8.4
£

8.6.3 Constant Pointer to Nonconstant Data

A constant pointer to nonconstant data is a pointer that always points to the same mem-
ory location, and the data at that location ¢z be modified through the pointer. Pointers
that are declared const must be initialized when they're declared, but if the pointer is a func-
tion parameter, it’s initialized with the pointer that’s passed to the function.

The program of Fig. 8.11 attempts to modify a constant pointer. Line 11 declares
pointer ptr to be of type int * const. The declaration is read from right to left as “ptr is

8.6 Using const with Pointers 349

a constant pointer to a nonconstant integer.” The pointer is initialized with the address of
integer variable x. Line 14 attempts to assign the address of y to ptr, but the compiler gen-
erates an error message. No error occurs when line 13 assigns the value 7 to *ptr—the
nonconstant value to which ptr points caz be modified using the dereferenced ptr, even
though ptr itself has been declared const.

1 // Fig. 8.11: fig08_11.cpp

2 // Attempting to modify a constant pointer to nonconstant data.
3

4 dint main(Q)

5 {

6 int x, y;

7

8 // ptr is a constant pointer to an integer that can

9 // be modified through ptr, but ptr always points to the

10 // same memory location.

11 int * const ptr = &x; // const pointer must be initialized
12

13 *ptr = 7; // allowed: *ptr is not const

14 ptr = &y; // error: ptr is const; cannot assign to it a new address

I5 } // end main

Microsoft Visual C++ compiler error message:

you cannot assign to a variable that is const

Fig. 8.11 | Attempting to modify a constant pointer to nonconstant data.

8.6.4 Constant Pointer to Constant Data

The minimum access privilege is granted by a constant pointer to constant data. Such a
pointer always points to the same memory location, and the data at that location cannor be
modified via the pointer. This is how a built-in array should be passed to a function that
only reads from the built-in array, using array subscript notation, and does nor modify the
built-in array. The program of Fig. 8.12 declares pointer variable ptr to be of type const
int * const (line 13). This declaration is read from right to left as “ptr is a constant pointer
to an integer constant.” The figure shows the Xcode LLVM compiler’s error messages that
are generated when an attempt is made to modify the data to which ptr points (line 17)
and when an attempt is made to modify the address stored in the pointer variable (line
18)—these show up on the lines of code with the errors in the Xcode text editor. In line
15, no errors occur when the program attempts to dereference ptr, or when the program
attempts to output the value to which ptr points, because neither the pointer nor the data
it points to is being modified in this statement.

1 // Fig. 8.12: fig08_12.cpp
2 // Attempting to modify a constant pointer to constant data.
3 #i